

Anlage A-1

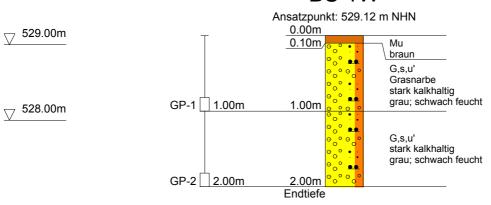
Dokumentation der Kleinbohrungen

BCE		Björnsen Beratende Ingenieure GmbH Maria Trost 3 - 56070 Koblenz		
Bi	ornsen Beratende Ingenieure	Tel.	0261 / 88 51-0) Fax: 0261 / 80 57 25
			e-mail: info	@bjoernsen.de
Auftraggeber:	Regierungspräsidium Tübingen	Projektnr.:	14095.36	Anlage:
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:
	Kirchberg - Sinningen	Datum:	18.05.2017	Ausgeführt: CH

BS_{1D}

Bohrloch bei 2,2 m u. GOK zugefallen

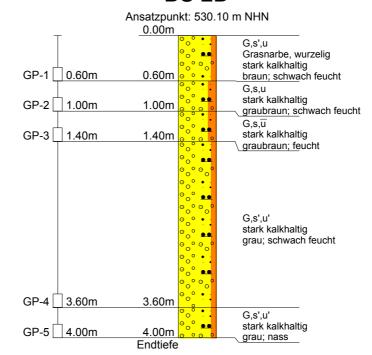
∑ 529.00m


∑_528.00m

∑ 527.00m

____526.00m

	BCE	Bjö		de Ingenieure GmbH - 56070 Koblenz
Bi	DRNSEN BERATENDE INGENIEURE	Tel.		Fax: 0261 / 80 57 25
			e-mail: info	@bjoernsen.de
Auftraggeber:	Regierungspräsidium Tübingen	Projektnr.:	14095.36	Anlage:
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:
	Kirchberg - Sinningen	Datum:	18.05.2017	Ausgeführt: CH


BS 1W

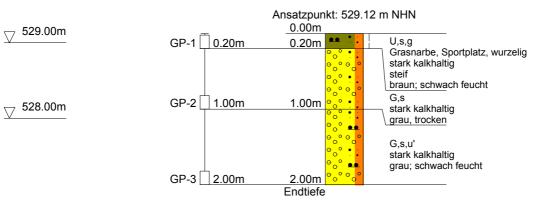
Bohrloch bei 1,6 m u. GOK zugefallen

BCE		Björnsen Beratende Ingenieure GmbH Maria Trost 3 - 56070 Koblenz		
Bi	ornsen Beratende Ingenieure	Tel.	0261 / 88 51-0) Fax: 0261 / 80 57 25
			e-mail: info	@bjoernsen.de
Auftraggeber:	Regierungspräsidium Tübingen	Projektnr.:	14095.36	Anlage:
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:
	Kirchberg - Sinningen	Datum:	18.05.2017	Ausgeführt: CH

BS_{2D}

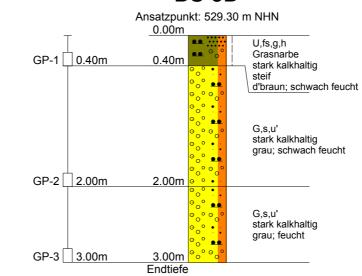
Bohrloch bei 2,6 m u. GOK zugefallen

∑_530.00m


∑ 529.00m

___ 528.00m

<u>___</u>527.00m

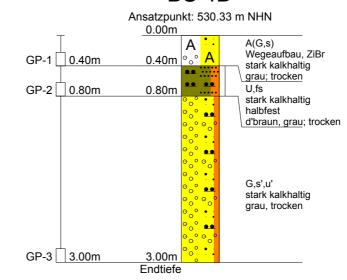

	BCE	Bjö		de Ingenieure GmbH - 56070 Koblenz
Bic	ORNSEN BERATENDE INGENIEURE	Tel.	0261 / 88 51-0) Fax: 0261 / 80 57 25
			e-mail: info	@bjoernsen.de
Auftraggeber:	Regierungspräsidium Tübingen	Projektnr.:	14095.36	Anlage:
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:
	Kirchberg - Sinningen	Datum:	18.05.2017	Ausgeführt: CH

BS 2W

	BCE	Bjö		de Ingenieure GmbH - 56070 Koblenz
Bi	DRNSEN BERATENDE INGENIEURE	Tel.		Fax: 0261 / 80 57 25
			e-mail: info	@bjoernsen.de
Auftraggeber:	Regierungspräsidium Tübingen	Projektnr.:	14095.36	Anlage:
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:
	Kirchberg - Sinningen	Datum:	18.05.2017	Ausgeführt: CH

BS 3D

kein weiterer Bohrfortschritt Bohrloch instabil, fällt zu;


∑ 529.00m

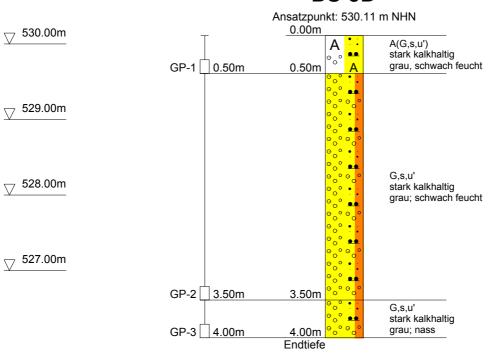
∑ 528.00m

___527.00m

	BCE	Bjö		de Ingenieure GmbH - 56070 Koblenz
Bi	ORNSEN BERATENDE INGENIEURE	Tel.		Fax: 0261 / 80 57 25
			e-mail: info	@bjoernsen.de
Auftraggeber:	Regierungspräsidium Tübingen	Projektnr.:	14095.36	Anlage:
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:
	Kirchberg - Sinningen	Datum:	17.05.2017	Ausgeführt: CH

BS 4D

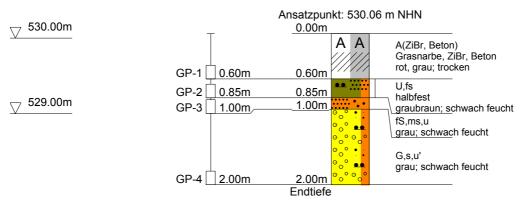
kein weiterer Bohrfortschritt Bohrloch zugefallen bei 2,6 m u. GOK


∑ 530.00m

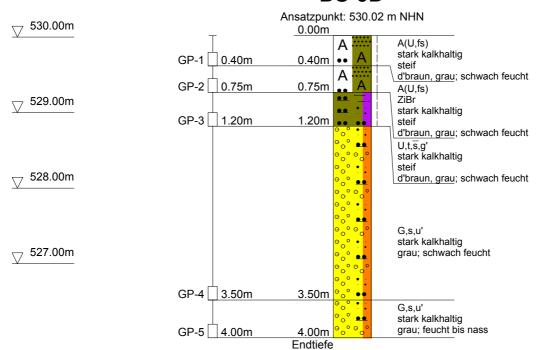
____529.00m

<u>___</u>528.00m

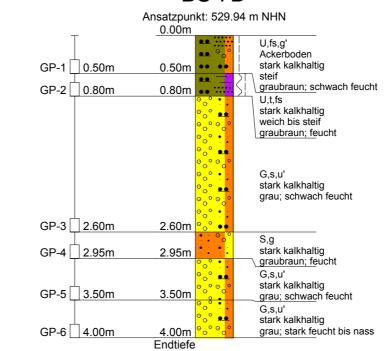
	BCE	Bjö		de Ingenieure GmbH - 56070 Koblenz
Bi	ORNSEN BERATENDE INGENIEURE	Tel.		Fax: 0261 / 80 57 25
			e-mail: info	@bjoernsen.de
Auftraggeber:	Regierungspräsidium Tübingen	Projektnr.:	14095.36	Anlage:
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:
	Kirchberg - Sinningen	Datum:	17.05.2017	Ausgeführt: CH


BS_{5D}

Bohrloch bei 3,0 m u. GOK zugefallen


	BCE	Bjö		de Ingenieure GmbH - 56070 Koblenz
Bic	ORNSEN BERATENDE INGENIEURE	Tel.	0261 / 88 51-0) Fax: 0261 / 80 57 25
			e-mail: info	@bjoernsen.de
Auftraggeber:	Regierungspräsidium Tübingen	Projektnr.:	14095.36	Anlage:
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:
	Kirchberg - Sinningen	Datum:	17.05.2017	Ausgeführt: CH

BS 5W


	BCE	Bjö		de Ingenieure GmbH - 56070 Koblenz
Bi	ornsen Beratende Ingenieure	Tel.	0261 / 88 51-0) Fax: 0261 / 80 57 25
			e-mail: info	@bjoernsen.de
Auftraggeber:	Regierungspräsidium Tübingen	Projektnr.:	14095.36	Anlage:
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:
	Kirchberg - Sinningen	Datum:	17.05.2017	Ausgeführt: CH

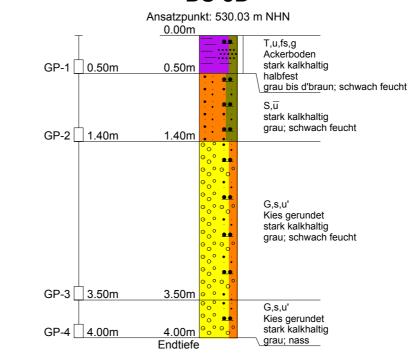
BS 6D

	BCE	Bjö		de Ingenieure GmbH - 56070 Koblenz
Bi	ORNSEN BERATENDE INGENIEURE	Tel.		Fax: 0261 / 80 57 25
			e-mail: info	@bjoernsen.de
Auftraggeber:	Regierungspräsidium Tübingen	Projektnr.:	14095.36	Anlage:
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:
	Kirchberg - Sinningen	Datum:	17.05.2017	Ausgeführt: CH

BS 7D

Bohrloch bei 3,5 m u. GOK zugefallen

∑ 529.00m


∑ 528.00m

√ 527.00m

∑ 526.00m

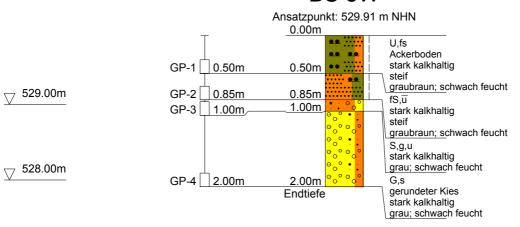
	BCE	Bjö		de Ingenieure GmbH - 56070 Koblenz
Bi	ornsen Beratende Ingenieure	Tel.) Fax: 0261 / 80 57 25
			e-mail: info	@bjoernsen.de
Auftraggeber:	Regierungspräsidium Tübingen	Projektnr.:	14095.36	Anlage:
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:
	Kirchberg - Sinningen	Datum:	17.05.2017	Ausgeführt: CH

BS 8D

Bohrloch bei 2,0 m u. GOK zugefallen

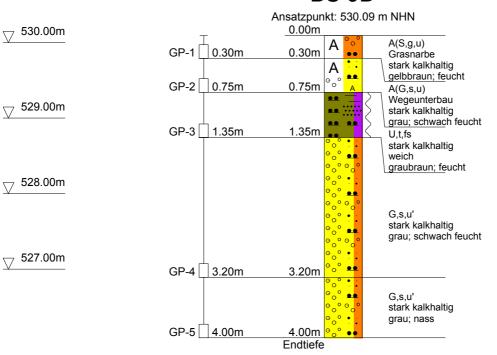
Anlage A-1	Seite 11

<u></u> 530.00m


___529.00m

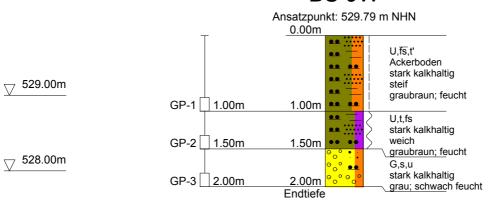
___528.00m

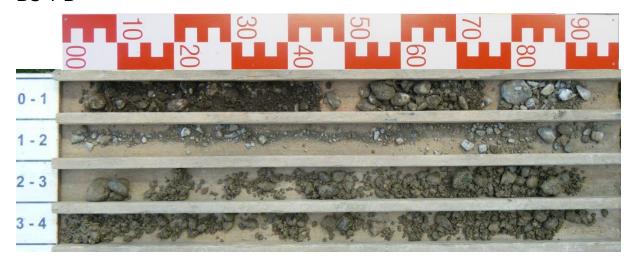
____527.00m


	BCE	Björnsen Beratende Ingenieure GmbH Maria Trost 3 - 56070 Koblenz				
Bič	ORNSEN BERATENDE INGENIEURE	Tel. 0261 / 88 51-0 Fax: 0261 / 80 57 25				
		e-mail: info@bjoernsen.de				
Auftraggeber:	Regierungspräsidium Tübingen	Projektnr.:	14095.36	Anlage:		
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:		
	Kirchberg - Sinningen	Datum:	17.05.2017	Ausgeführt: CH		

BS 8W

	BCE	Björnsen Beratende Ingenieure GmbH Maria Trost 3 - 56070 Koblenz				
Bi	DRNSEN BERATENDE INGENIEURE	Tel. 0261 / 88 51-0 Fax: 0261 / 80 57 25				
		e-mail: info@bjoernsen.de				
Auftraggeber:	Regierungspräsidium Tübingen	Projektnr.:	14095.36	Anlage:		
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:		
	Kirchberg - Sinningen	Datum:	16.05.2017	Ausgeführt: CH		


BS 9D


Bohrloch bei 3,2 m u. GOK zugefallen

	BCC	Björnsen Beratende Ingenieure GmbH Maria Trost 3 - 56070 Koblenz				
Bi	Drnsen Beratende Ingenieure	Tel. 0261 / 88 51-0 Fax: 0261 / 80 57 25				
		e-mail: info@bjoernsen.de				
Auftraggeber:	Regierungspräsidium Tübingen	Projektnr.:	14095.36	Anlage:		
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:		
	Kirchberg - Sinningen	Datum:	16.05.2017	Ausgeführt: CH		

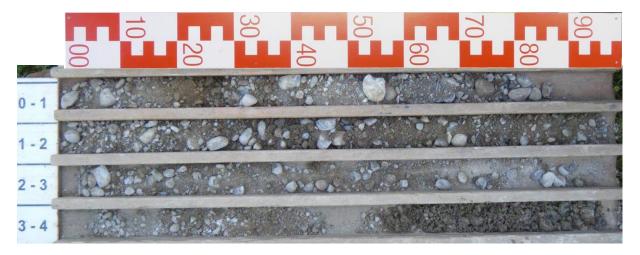
BS 9W

BS 1-D

BS 1-W


BS 2-D

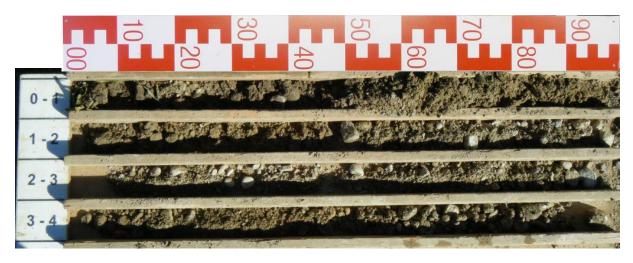
BS 2-W

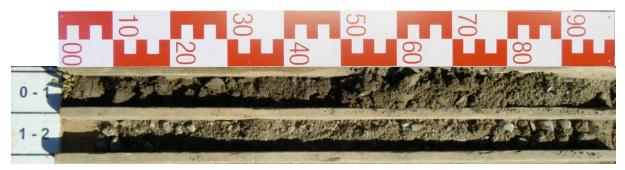

BS 3-D

BS 4-D

BS 5-D

BS 5-W


BS 6-D


BS 7-D

BS 8-D

BS 8-W

BS 9-D

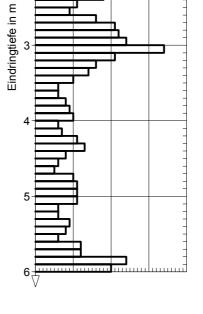
BS 9-W

Anlage A-2

Dokumentation der Rammsondierungen DPH

DPH 2D

			_	•
Aufraggeber: Regierungspräsidium Tübingen		Projektnr.:	2014095.36	Anlage:
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:
	Kirchberg - Sinningen	Datum:	18.05.2017	Ausgeführt: CH


FIOJEK	ι.	Kirchberg - S					
		Kirchi	perg - S				
Tiefe	N 10	Tiefe	N 10				
0.10	1	5.10	11				
0.20	5	5.20	6				
0.30	7	5.30	6				
0.40	10	5.40	9				
0.50	8	5.50	8				
0.60	6	5.60	6				
0.70	3	5.70	12				
0.80	3	5.80	12				
0.90	1	5.90	24				
1.00	5	6.00	20				
1.10	10	0.00					
1.20	11						
	13						
1.30							
1.40	13						
1.50	16						
1.60	16						
1.70	14						
1.80	15						
1.90	18						
2.00	17						
2.10	23						
2.20	20						
2.30	22						
2.40	18						
2.50	11						
2.60	9						
2.70	16						
2.80	21						
2.90	22						
3.00	24						
3.10	34						
3.20	21						
3.30	16						
3.40	14						
3.50	10						
3.60	6						
3.70	6						
3.80	8						
3.90	9						
4.00	10						
4.10	6						
4.20	7						
4.30	11						
4.40	13						
4.50	8						
4.60	6						
4.70	5						
4.80	10						
4.90	11						
5.00	11						

Ansatzpunkt: 530.10 m NHN DPH Anzahl Schläge N10H 10 20 30 40 0 529.00m

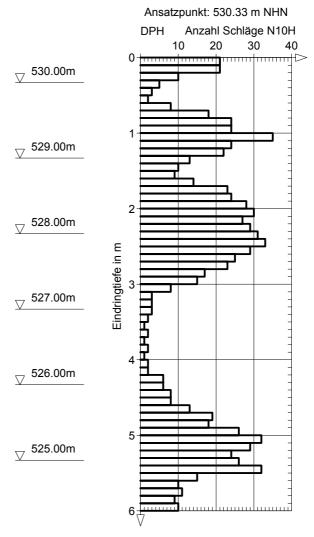
_▽ 526.00m

527.00m

_▽ 525.00m

Rammsondierung nach DIN EN ISO 22476-2

i:\dc-dateien


Anlage A-2 Seite 1

Aufraggeber: Regierungspräsidium Tübingen Projektnr.: 2014095.36 Anlage:
Projekt: Iller - Hochwasserschutz Maßstab: 1: 50 Bericht:
Kirchberg - Sinningen Datum: 17.05.2017 Ausgeführt: CH

i rojen	٠		
		Kirchl	perg - S
Tiefe	N 10	Tiefe	N 10
0.10	21	5.10	32
0.20	21	5.20	29
0.30	10	5.30	24
0.40	5	5.40	26
0.50	3	5.50	32
0.60	2	5.60	15
0.70	8	5.70	10
0.80	18	5.80	11
0.90	24	5.90	9
1.00	24	6.00	10
1.10	35		
1.20	24		
1.30	22		
1.40	13		
1.50	10		
1.60	9		
1.70	14		
1.80	23		
1.90	24		
2.00	28		
2.10	30		
2.20	27		
2.30	29		
2.40	31		
2.50	33		
2.60	29		
2.70	25		
2.80	23		
2.90	17		
3.00	15		
3.10	8		
3.20	3		
3.30	3		
3.40	3		
3.50	2		
3.60	1		
3.70	2		
3.80	1		
3.90	2		
4.00	1		
4.10	2		
4.20	2		
4.30	6		
4.40	6		
4.50	8		
4.60	8		
4.70	13		
4.80	19		
4.90	18		
5.00	26		

DPH 4D

Rammsondierung nach DIN EN ISO 22476-2

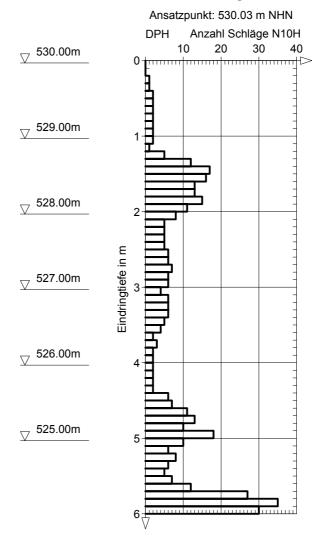
Anlage A-2 Seite 2

Aufraggeber: Regierungspräsidium Tübingen		Projektnr.:	2014095.36	Anlage:
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:
	Kirchberg - Sinningen	Datum:	17.05.2017	Ausgeführt: CH

Flojek	ι.	Kirchberg - S					
			berg - S				
Tiefe	N 10	Tiefe	N 10				
0.10	1	5.10	28				
0.20	3	5.20	30				
0.30	3	5.30	31				
0.40	1	5.40	25				
0.50	0	5.50	22				
0.60	2	5.60	21				
0.70	5	5.70	18				
0.80	11	5.80	12				
0.90	10	5.90	10				
1.00	11	6.00	11				
1.10	9						
1.20	8						
1.30	5						
1.40	4						
1.50	7						
1.60	7						
1.70							
1.80	8						
1.90	5						
2.00	5						
2.10	5						
2.20	4						
2.30	2						
2.40	2						
2.50	1						
2.60	1						
2.70	5						
2.80	9						
2.90	4						
3.00	8						
3.10	14						
3.20	12						
3.30	13						
3.40	12						
3.50	10						
3.60	11						
3.70	12						
3.80	15						
3.90	13						
4.00	12						
4.10	13						
4.20	16						
4.30	11						
4.40	11						
4.50	13						
4.60	13						
4.70	13						
4.80	12						
4.90	14						
5.00	18						

DPH 7D Ansatzpunkt: 529.94 m NHN DPH Anzahl Schläge N10H 10 20 30 40 529.00m 528.00m 526.00m 526.00m

Rammsondierung nach DIN EN ISO 22476-2


Anlage A-2 Seite 3

Aufraggeber:	Regierungspräsidium Tübingen	Projektnr.:	2014095.36	Anlage:
Projekt:	Iller - Hochwasserschutz	Maßstab:	1: 50	Bericht:
	Kirchberg - Sinningen	Datum:	17.05.2017	Ausgeführt: CH

,		Kirchl	oerg - S
Tiefe	N 10	Tiefe	N 10
0.10	0	5.10	10
0.20	0	5.20	6
0.30	1	5.30	8
0.40	1	5.40	6
0.50	2	5.50	5
0.60	2	5.60	7
0.70	2	5.70	12
0.80	2	5.80	27
0.90	2	5.90	35
1.00	2	6.00	30
1.10	2		
1.20	1		
1.30	5		
1.40	12		
1.50	17		
1.60	16		
1.70	13		
1.80	13		
1.90	15		
2.00	11		
2.10	8		
2.20	5		
2.30	5		
2.40	5		
2.50	5 6		
2.60			
2.70	6		
2.80	7		
2.90	6		
3.00	6		
3.10	4		
3.20	6		
3.30	6		
3.40	6		
3.50	5		
3.60	4		
3.70	2		
3.80	3		
3.90	2		
4.00	2		
4.10	2		
4.20	2		
4.30	2		
4.40	2		
4.50	6		
4.60	7		
4.70	11		
4.80	13		
4.90	10		
5.00	18		

DPH 8D

Rammsondierung nach DIN EN ISO 22476-2

i:\dc-dateien

Anlage A-3

Protokolle der bodenmechanischen Laborversuche

BJÖRNSEN BERATENDE INGENIEURE				zu	Anlage					
Bestimmung des Wassergehaltes			Entnahme	stelle:	BS 1D - BS 7D					
durch Ofentrocknung nach DIN EN ISO 17892, Teil 1			Tiefe:			s.u.				
	ben: 14095	5.36	Bodenart:			s.u.				
HWS Kirchberg-Sinningen			Art der Ent	tnahme:	-	gestört				
Ausgef. durch: CH Hul Da	tum: 19.05.	.2017	Entnahme	am:	17.05.2017	durch:	BCE			
Bohrung	BS	1D	BS 3D	BS 4D	BS 5W	BS 6D	BS 7D			
Probe	1	1	1	2	2	3	1			
Entnahmetiefe [m]:	0,0-	-0,5	0,0-0,4	0,4-0,8	0,6-0,85	0,75-1,2	0,0-0,5			
Bodenart nach DIN 4022	U,ç	g,s	U,fs,g,h	U,fs	U,fs	U,t,s*,g'	U,fs,g'			
Behälter-Nr.	K	67	K38	K65	K15	K41	K44			
Feuchte Probe + Behälter m + m	g] 184,	,210	112,520	116,360	146,040	225,100	208,650			
Trockene Probe + Behälter $m_{ m d}$ + m	3 [g] 157,	,440	102,250	99,330	127,800	184,890	178,980			
Behälter m	g] 12,8	800	12,810	12,770	12,650	12,790	12,810			
Wasser $(m+m_B)-(m_d+m_B)=m_V$	[g] 26,7	770	10,270	17,030	18,240	40,210	29,670			
Trockene Probe m	[g] 144,	,640	89,440	86,560	115,150	172,100	166,170			
Wassergehalt $w = m_W$	/ m _d 0,1	85	0,115	0,197	0,158	0,234	0,179			
BJÖRNSEN BERATENDE INGENIEURE		BIÖRNSEN BERATENDE INGENIEURE 711:								
			zu:							
Bestimmung des Wassergehaltes			Entnahmes			7D - BS 9W				
Bestimmung des Wassergehaltes durch Ofentrocknung nach DIN EN ISO 17892, Teil 1			Entnahmes			7D - BS 9W s.u.				
durch Ofentrocknung nach DIN EN ISO 17892, Teil 1	ben: 14095.	.36								
durch Ofentrocknung nach DIN EN ISO 17892, Teil 1	ben: 14095.	.36	Tiefe:	stelle:		s.u.				
durch Ofentrocknung nach DIN EN ISO 17892, Teil 1 Prüfungs-Nr.: 158 Bauvorha HWS Kirchberg-Sinningen	ben: 14095. um: 19.05.2		Tiefe: Bodenart:	stelle: nahme:		s.u. s.u. gestört	BCE			
durch Ofentrocknung nach DIN EN ISO 17892, Teil 1 Prüfungs-Nr.: 158 Bauvorha HWS Kirchberg-Sinningen		2017	Tiefe: Bodenart: Art der Entr	stelle: nahme:	BS	s.u. s.u. gestört				
durch Ofentrocknung nach DIN EN ISO 17892, Teil 1 Prüfungs-Nr.: 158 Bauvorha HWS Kirchberg-Sinningen Ausgef. durch: CH HAA Da	um: 19.05.2	2017 7 D	Tiefe: Bodenart: Art der Entre Entnahme a	atelle: nahme: am:	17.05.2017	s.u. s.u. gestört durch:	BCE			
durch Ofentrocknung nach DIN EN ISO 17892, Teil 1 Prüfungs-Nr.: 158 Bauvorha HWS Kirchberg-Sinningen Ausgef. durch: CH H. Dai Bohrung	um: 19.05.2	2017 7D	Tiefe: Bodenart: Art der Entre Entnahme a	nahme: am:	17.05.2017 BS 9D	s.u. s.u. gestört durch: BS 9W	BCE BS 9W			
durch Ofentrocknung nach DIN EN ISO 17892, Teil 1 Prüfungs-Nr.: 158 Bauvorha HWS Kirchberg-Sinningen Ausgef. durch: CH H. Dar Bohrung Probe	BS 2	2017 7 D	Tiefe: Bodenart: Art der Entr Entnahme a BS 8D 1	nahme: am: BS 8W	17.05.2017 BS 9D 3	s.u. s.u. gestört durch: BS 9W 1	BS 9W			
durch Ofentrocknung nach DIN EN ISO 17892, Teil 1 Prüfungs-Nr.: 158 Bauvorha HWS Kirchberg-Sinningen Ausgef. durch: CH H. Dar Bohrung Probe Entnahmetiefe [m]:	BS 2	2017 7D 0,8	Tiefe: Bodenart: Art der Entr Entnahme a BS 8D 1 0,0-0,5	am: BS 8W 1 0,0-0,5	17.05.2017 BS 9D 3 0,75-1,35	s.u. s.u. gestört durch: BS 9W 1 0,0-1,0	BS 9W 2 1,0-1,5			
durch Ofentrocknung nach DIN EN ISO 17892, Teil 1 Prüfungs-Nr.: 158 Bauvorha HWS Kirchberg-Sinningen Ausgef. durch: CH H. Da Bohrung Probe Entnahmetiefe [m]: Bodenart nach DIN 4022	BS 2 0,5-0 U,t,	2017 7D 0,8 653	Tiefe: Bodenart: Art der Entr Entnahme a BS 8D 1 0,0-0,5 T,u,fs,g	am: BS 8W 1 0,0-0,5 U,fs	BS 9D 3 0,75-1,35 U,t,fs	s.u. s.u. gestört durch: BS 9W 1 0,0-1,0 U,fs*,t'	BS 9W 2 1,0-1,5 U,t,fs			
durch Ofentrocknung nach DIN EN ISO 17892, Teil 1 Prüfungs-Nr.: 158 Bauvorha HWS Kirchberg-Sinningen Ausgef. durch: CH H. Da Bohrung Probe Entnahmetiefe [m]: Bodenart nach DIN 4022 Behälter-Nr.	BS 2 0,5-0 U,t, [g] 271,8	2017 7D 0,8 .fs :3	Tiefe: Bodenart: Art der Entr Entnahme a BS 8D 1 0,0-0,5 T,u,fs,g K57	stelle: nahme: am: BS 8W 1 0,0-0,5 U,fs K69	BS 9D 3 0,75-1,35 U,t,fs	s.u. s.u. gestört durch: BS 9W 1 0,0-1,0 U,fs*,t' K62	BCE BS 9W 2 1,0-1,5 U,t,fs K21			
durch Ofentrocknung nach DIN EN ISO 17892, Teil 1 Prüfungs-Nr.: 158 Bauvorha HWS Kirchberg-Sinningen Ausgef. durch: CH Had Date Bohrung Probe Entnahmetiefe [m]: Bodenart nach DIN 4022 Behälter-Nr. Feuchte Probe + Behälter	BS 2 0,5-0 U,t, [g] 271,8	2017 7D 0,8 fs 3 950	Tiefe: Bodenart: Art der Entre Entnahme a BS 8D 1 0,0-0,5 T,u,fs,g K57 137,400	BS 8W 1 0,0-0,5 U,fs K69 130,060	BS 9D 3 0,75-1,35 U,t,fs K66 205,170	s.u. s.u. gestört durch: BS 9W 1 0,0-1,0 U,fs*,t' K62 277,280	BCE BS 9W 2 1,0-1,5 U,t,fs K21 205,190			
durch Ofentrocknung nach DIN EN ISO 17892, Teil 1 Prüfungs-Nr.: 158 Bauvorha HWS Kirchberg-Sinningen Ausgef. durch: CH Had Date Bohrung Probe Entnahmetiefe [m]: Bodenart nach DIN 4022 Behälter-Nr. Feuchte Probe + Behälter	um: 19.05.2 BS 2 0,5-(U,t, K6 [g] 271,5 [g] 222,7	2017 7D 0,8 fs 3 950 130 80	Tiefe: Bodenart: Art der Entre Entnahme a BS 8D 1 0,0-0,5 T,u,fs,g K57 137,400 120,150	stelle: nahme: am: BS 8W 1 0,0-0,5 U,fs K69 130,060 105,320	17.05.2017 BS 9D 3 0,75-1,35 U,t,fs K66 205,170 174,830	s.u. s.u. gestört durch: BS 9W 1 0,0-1,0 U,fs*,t' K62 277,280 228,920	BCE BS 9W 2 1,0-1,5 U,t,fs K21 205,190 165,580			
durch Ofentrocknung nach DIN EN ISO 17892, Teil 1 Prüfungs-Nr.: 158 Bauvorha HWS Kirchberg-Sinningen Ausgef. durch: CH HAA Dai Bohrung Probe Entnahmetiefe [m]: Bodenart nach DIN 4022 Behälter-Nr. Feuchte Probe + Behälter	um: 19.05.2 BS 2 0,5-(U,t, K6 [g] 271,5 [g] 222,7	2017 7D 0,8 nfs 13 950 130 80	Tiefe: Bodenart: Art der Entre Entnahme a BS 8D 1 0,0-0,5 T,u,fs,g K57 137,400 120,150 12,690	stelle: nahme: am: BS 8W 1 0,0-0,5 U,fs K69 130,060 105,320 12,930	BS 9D 3 0,75-1,35 U,t,fs K66 205,170 174,830 12,770	s.u. s.u. gestört durch: BS 9W 1 0,0-1,0 U,fs*,t* K62 277,280 228,920 14,170	BCE BS 9W 2 1,0-1,5 U,t,fs K21 205,190 165,580 12,610			

Versuchsart:

BJÖRNSEN BERATENDE INGENIEURE

Kornverteilung

DIN 18 123-5

Björnsen Beratende Ingenieure GmbH

Maria Trost 3, 56070 Koblenz

Tel. 0261/8851-0 Fax: 805725 e-mail: info@bjoernsen.de

Anlage:

Ausgef. durch : CH 444--22.05.2017

Datum:

Labor Nr.: 173 Entnahme am: 18.05.2017

Trockensieb./Abtrennen Feinanteil

Kirchberg - Sinningen

Projektnummer: 14095.36

Projekt : Iller - Hochwasserschutz

	Ton Schluff			Sand			Kies			Stei			
		Fein-		Mittel-	Grob-	F	ein-	Mittel-	Grob-	Fein-	Mitt		Grob-
100													-
90 -			+++++										
80													
70													
60													
50			++++								++++/		
40													
30													
20													
								_					
10							_						
0													
	0.00	2	0.006	0.0	2 0.	06	0.2	0.0 nesser in mm	3	2	6	20	60

Probenbezeichnung	——● —— BS 2D-4 (1,40-3,60 m)
Entnahmestelle	BS 2D
Bodenart DIN 4022	$G_i S^i_i U^i$
Bodengruppe nach DIN 18196	GU
d60[mm]	12.767 mm
d10[mm]	0.239 mm
Ungleichförm, U	53,4
kf nach Hazen	-(Cu > 5)
kf nach Beyer	- (Cu > 30)
kf nach Kaubisch	- (0.063 <= 10%)
kf nach Seiler	3.2E-002 m/s

BCE

BJÖRNSEN BERATENDE INGENIEURE

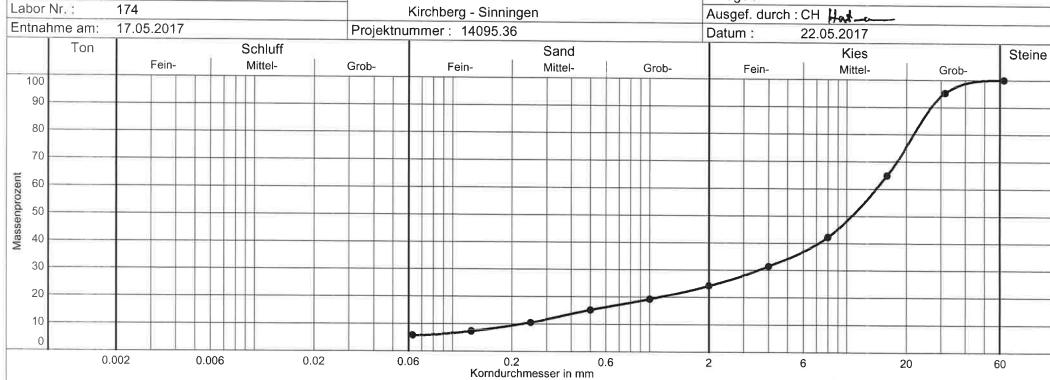
Trockensieb./Abtrennen Feinanteil

Versuchsart:

Kornverteilung

DIN 18 123-5

Projekt : Iller - Hochwasserschutz


Björnsen Beratende Ingenieure GmbH

Maria Trost 3, 56070 Koblenz

Tel. 0261/8851-0 Fax: 805725

e-mail: info@bjoernsen.de

Anlage:

Probenbezeichnung	BS 4D-3 (0,80-3,00 m)
Entnahmestelle	BS 4D
Bodenart DIN 4022	G _i s' _i u'
Bodengruppe nach DIN 18196	GU
d60[mm]	14,062 mm
d10[mm]	0.226 mm
Ungleichförm. U	62.3
kf nach Hazen	- (Cu > 5)
kf nach Beyer	- (Cu > 30)
kf nach Kaubisch	- (0.063 <= 10%)
kf nach Seiler	1.3E-002 m/s

BCE

169

Versuchsart:

Labor Nr.:

BJÖRNSEN BERATENDE INGENIEURE

Sieb-Schlämmanalyse

Kornverteilung

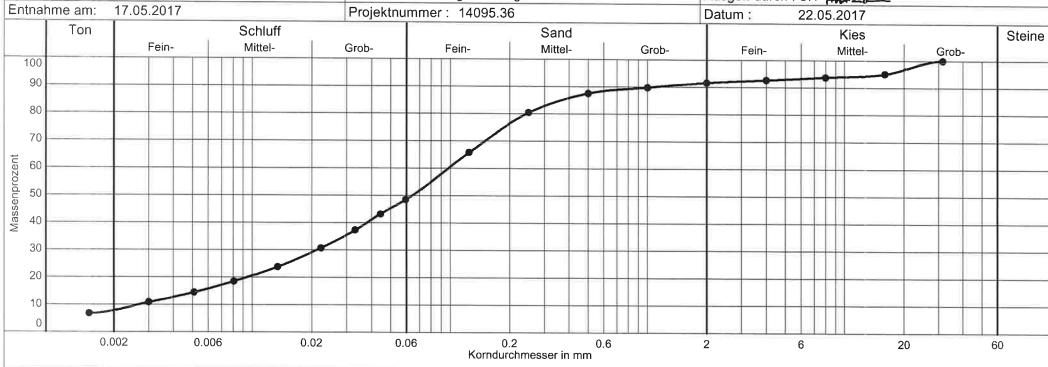
DIN 18 123-7

Projekt : Iller - Hochwasserschutz

Kirchberg - Sinningen

Björnsen Beratende Ingenieure GmbH

Maria Trost 3, 56070 Koblenz

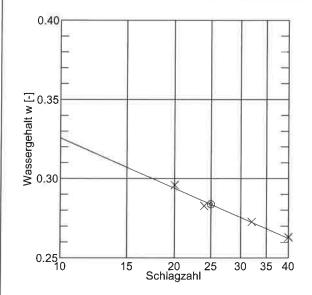

Tel. 0261/8851-0 Fax: 805725

e-mail: info@bjoernsen.de

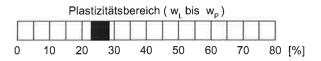
Anlage:

Ausgef. durch ; CH

Datum : 22.05.2017



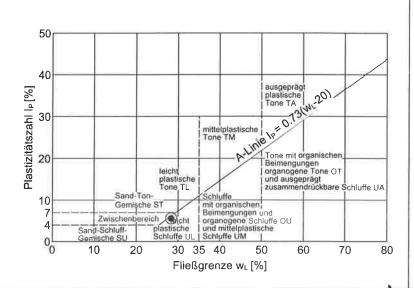
Probenbezeichnung	—● BS 6D-3 (0,75-1,20 m)	
Entnahmestelle	BS 6D	
Bodenart DIN 4022	$U_{i}t_{i}s^{*},g^{'}$	
Bodengruppe nach DIN 18196	UL/TL	
d60[mm]	0.098 mm	
d10[mm]	0.003 mm	
Ungleichförm. U	36.6	
kf nach Hazen	- (Cu > 5)	
kf nach Beyer	- (Cu > 30)	
kf nach Kaubisch	4.9E-009 m/s	
kf nach Seiler		


Anlage A-3 Seite 5

BORESCY BOURT FOR PICCONFLUE	Björnsen Beratende Ing. GmbH	Projekt : Iller - HWS Kirchberg - Sinningen				
	Maria Trost 3	Projektnr.: 14095.36				
	56070 Koblenz	Anlage :				
	Tel. 0261/8851-0 Fax: 805725	Datum : 06.06.2017				
Zuctono	logranzan	Probe: BS 6D-3				
	Isgrenzen	Tiefe : 0,75-1,20 m				
DIN 18 122		Bodenart : U,t,fs,g'				
Entnahmestelle	: BS 6D-3 (0,75-1,20 m)	Labor - Nr. : 164				
Ausgef. durch	: CH Hat	Entn. am : 17.05.2017				

			F	ließgren	ze	Ausrollgrenze				
Behälter-Nr.		301	221	307	x-1	4a	302	121		
Zahl der Schläge		40	32	24	20					
Feuchte Probe + Behälter	m _f + m _B [g]	81.33	80.92	84.45	76.28	59.14	58.56	55.39		
Trockene Probe + Behälter	m _t + m _B [g]	75.69	74.96	77.70	69.63	58.15	57.61	54.40		
Behälter	m _B [g]	54.22	53.11	53.82	47.16	53.86	53.44	50.05		
Wasser	$m_f - m_t = m_w [g]$	5.64	5.96	6.75	6.65	0.99	0.95	0.99		
Trockene Probe	m _t [g]	21.47	21.85	23.88	22.47	4.29	4.17	4.35	Mittel	
Wassergehalt mw = w	[-]	0.263	0.273	0.283	0.296	0.231	0.228	0.228	0.229	

Wassergehalt $w_N = 0.234$ Fließgrenze $w_L = 0.284$ Ausrollgrenze $w_P = 0.229$



Plastizitätszahl $I_p = w_L - w_p = 0.055$

Liquiditätsindex $I_L = \frac{w_N - w_P}{I_P} = 0.091$

Konsistenzzahl $I_C = \frac{W_L - W_N}{I_P} = 0.909$

Sieb-Schlämmanalyse

Versuchsart:

Labor Nr.:

Kornverteilung

DIN 18 123-7

Björnsen Beratende Ingenieure GmbH

Maria Trost 3, 56070 Koblenz Tel. 0261/8851-0 Fax: 805725

e-mail: info@bjoernsen.de

Anlage:

Ausgef. durch : CH #____

Datum: 22.05.2017

170 Kirchberg - Sinningen Entnahme am: 17.05.2017 Projektnummer: 14095.36

Projekt : Iller - Hochwasserschutz

	Ton		Schluff	5		Sand			Kies		Steine
		Fein-	Mittel-	Grob-	Fein-	Mittel-	Grob-	Fein-	Mittel-	Grob-	
100											
90											
80											
70											
t 60											
9zoudu 50											
Massenprozent											
30											
20											
10 0	•										
	0.00	02	0.006	0.02 0.	06 0 Korndur	0.2 0 chmesser in mm	.6	2	6	20	60

Probenbezeichnung	● BS 8D-1 (0,00-0,50 m)
Entnahmestelle	BS 8D
Bodenart DIN 4022	T,u,fs,g
Bodengruppe nach DIN 18196	TM
d60[mm]	0.182 mm
d10[mm]	0,003 mm
Ungleichförm. U	55,2
kf nach Hazen	-(Cu > 5)
kf nach Beyer	-(Cu > 30)
kf nach Kaubisch	8.8E-009 m/s
kf nach Seiler	

Anlage A-3 Seite 7

Projekt : Iller - HWS Kirchberg - Sinningen

Projektnr.: 14095.36

Anlage :

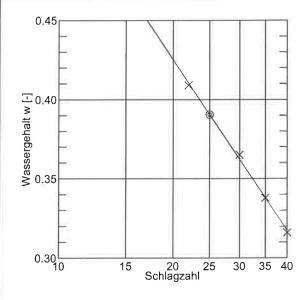
Zuctond	caronzon
Zustanu	sgrenzen

DIN 18 122

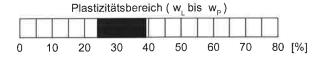
Entnahmestelle: BS 8D-1 (0,00-0,50 m)

Maria Trost 3 56070 Koblenz

Björnsen Beratende Ing. GmbH

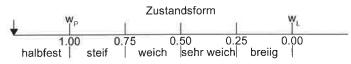

Tel. 0261/8851-0 Fax: 805725

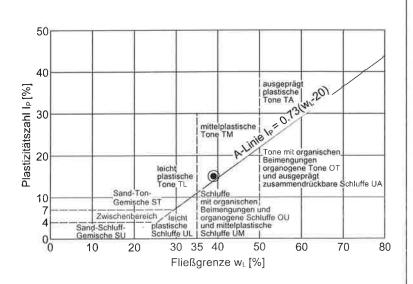
Ausgef. durch : CH Had


Datum	: 02.06	3.2017	
Probe:		BS 8D-1	
Tiefe	(*)	0,00-0,50 m	
Bodenart		T,u,fs,g	
Labor - Nr.	. A	163	

Entn. am : 17.05.2017

9	Li hert harm										
			F	Fließgrenze				Αι	ısrollgrer	ıze	
Behälter-Nr.		11	2	3	120		305	15	210		
Zahl der Schläge		40	35	30	22						
Feuchte Probe + Behälter	m _f + m _B [g]	74.22	79.55	78.49	80.70		60.58	58.92	58.86		
Trockene Probe + Behälter	m ₁ + m _B [g]	69.43	73.02	71.14	72.82		59.61	57.91	57.87		
Behälter	m _B [g]	54.25	53.68	51.03	53.56		55.54	53.77	53.70		
Wasser	$m_f - m_t = m_w [g]$	4.79	6.53	7.35	7.88		0.97	1.01	0.99		
Trockene Probe	m, [g]	15.18	19.34	20.11	19.26		4.07	4.14	4.17	Mittel	
Wassergehalt $\frac{m_w}{m_t} = w$	[-]	0.316	0.338	0.365	0.409		0.238	0.244	0.237	0.240	


 $\begin{array}{llll} \text{Wassergehalt} & & \text{W}_{\text{N}} & = 0.161 \\ \text{Fließgrenze} & & \text{W}_{\text{L}} & = 0.390 \\ \text{Ausrollgrenze} & & \text{W}_{\text{p}} & = 0.240 \\ \end{array}$



Plastizitätszahl $I_p = w_L - w_P = 0.150$

Liquiditätsindex $I_L = \frac{W_N - W_P}{I_P} = -0.527$

Konsistenzzahl $I_C = \frac{W_L - W_N}{I_D} = 1.527$

Björnsen Beratende Ingenieure GmbH BCE Kornverteilung Maria Trost 3, 56070 Koblenz BJÖRNSEN BERATENDE INGENIEURE DIN 18 123-7 Tel. 0261/8851-0 Fax: 805725 e-mail: info@bjoernsen.de Versuchsart: Sieb-Schlämmanalyse Projekt: Iller - Hochwasserschutz Anlage: Labor Nr.: 171 Kirchberg - Sinningen Ausgef. durch : CH Hat ____ Entnahme am: 17.05.2017 Projektnummer: 14095.36 Datum: 22.05.2017 Ton Schluff Sand Kies Steine Fein-Mittel-Grob-Fein-Mittel-Grob-Fein-Mittel-Grob-100 90 80 70 Massenprozent 60 50 30 20 10 0.002 0.006 0.02 0.06 0.2 0.6 2 6 20 60 Korndurchmesser in mm Probenbezeichnung BS 8D-2 (0,50-1,40 m) Entnahmestelle BS 8D Bodenart DIN 4022 S,u* Bodengruppe nach DIN 18196 SU*/ST* d60[mm] 0.148 mm d10[mm] 0.006 mm

Ungleichförm, U

kf nach Hazen

kf nach Beyer

kf nach Seiler

kf nach Kaubisch

24.6

- (Cu > 5)

3.3E-007 m/s

3.5E-008 m/s

8.3E-007 m/s

BJÖRNSEN BERATENDE INGENIEURE

172

Trockensieb./Abtrennen Feinanteil

Versuchsart:

Labor Nr. :

Kornverteilung

DIN 18 123-5

Projekt : Iller - Hochwasserschutz

Kirchberg - Sinningen

Björnsen Beratende Ingenieure GmbH

Maria Trost 3, 56070 Koblenz

Tel. 0261/8851-0 Fax: 805725 e-mail: info@bjoernsen.de

Anlage:

Ausgef. durch : CH Had____

Entnahm	ne am:	17.05.2017			Projektnur	mmer: 14	095.36			Datum :	22.05.2017		
	Ton		Schlut	ff				Sand			Kies		Steine
		Fein-	Mittel-		Grob-	Fein-		/littel-	Grob-	Fein-	Mittel-	Grob-	1
100 90													
80 —													
70 —													
09 —													
Massenprozent													
88 40 —													
30													
20 —													
10													
	0.0	02	0.006	0.02	0.0	6 	0.2 Korndurchmes	0.6 ser in mm		2	6	20	60

Probenbezeichnung	—●— BS 8D-3 (1,40-3,50 m)
Entnahmestelle	BS 8D
Bodenart DIN 4022	G,s,u'
Bodengruppe nach DIN 18196	GU
d60[mm]	12,934 mm
d10[mm]	0,174 mm
Ungleichförm. U	74.5
kf nach Hazen	- (Cu > 5)
kf nach Beyer	- (Cu > 30)
kf nach Kaubisch	- (0.063 <= 10%)
kf nach Seiler	9.7E-003 m/s

BJÖRNSEN BERATENDE INGENIEURE

Kornverteilung

DIN 18 123-5

Björnsen Beratende Ingenieure GmbH

Maria Trost 3, 56070 Koblenz

Tel. 0261/8851-0 Fax: 805725

e-mail: info@bjoernsen.de

Anlage:

Ausgef. durch : CH #

Datum: 22.05.2017

Versuchsart: Trockensieb./Abtrennen Feinanteil Labor Nr.:

162

Entnahme am:

17.05.2017

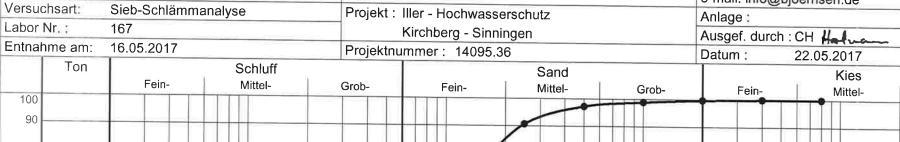
Projektnummer: 14095.36

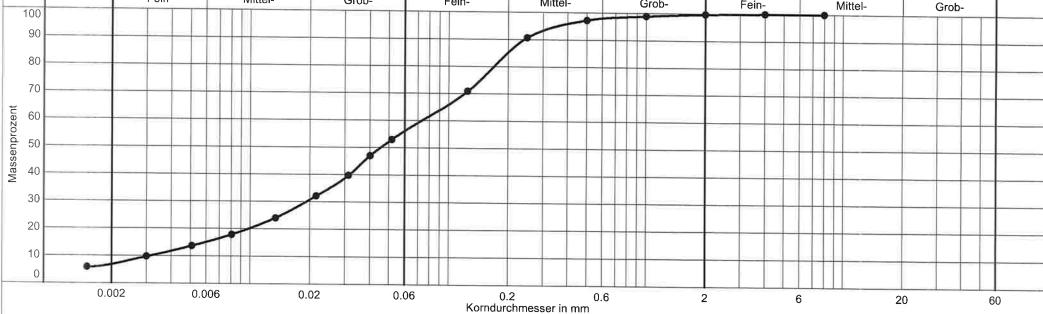
Projekt : Iller - Hochwasserschutz

Kirchberg - Sinningen

Ton Schluff Sand Kies Steine Fein-Mittel-Grob-Fein-Mittel-Grob-Mittel-Fein-Grob-100 90 80 70 Massenprozent 50 30 20 10 0 0.002 0.006 0.06 0.02 0.2 0.6 2 6 20 60 Korndurchmesser in mm

Probenbezeichnung	—●— BS 8W-4 (1,00-2,00 m)
Entnahmestelle	BS 8W
Bodenart DIN 4022	G,s
Bodengruppe nach DIN 18196	GI
d60[mm]	13.871 mm
d10[mm]	0.296 mm
Ungleichförm. U	46.9
kf nach Hazen	- (Cu > 5)
kf nach Beyer	- (Cu > 30)
kf nach Kaubisch	- (0.063 <= 10%)
kf nach Seiler	1.1E-002 m/s

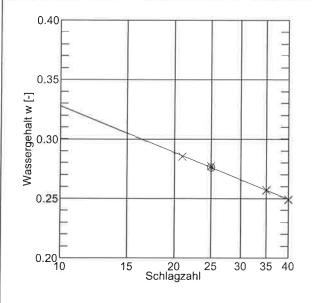

Kornverteilung

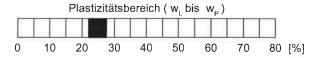

DIN 18 123-7

Björnsen Beratende Ingenieure GmbH

Maria Trost 3, 56070 Koblenz Tel. 0261/8851-0 Fax: 805725

e-mail: info@bjoernsen.de




Probenbezeichnung	BS 9W-1 (0,00-1,00 m)
Entnahmestelle	BS 9W
Bodenart DIN 4022	U,fs*,t*
Bodengruppe nach DIN 18196	UL/TL
d60[mm]	0.074 mm
d10[mm]	0.003 mm
Ungleichförm. U	23.3
kf nach Hazen	- (Cu > 5)
kf nach Beyer	9.1E-008 m/s
kf nach Kaubisch	1.6E-009 m/s
kf nach Seiler	

Steine

		Anlage A-3 Seite 12
	Björnsen Beratende Ing. GmbH	Projekt : Iller - HWS Kirchberg - Sinningen
Brance-Bostner hazette	Maria Trost 3	Projektnr.: 14095.36
	56070 Koblenz	Anlage :
	Tel. 0261/8851-0 Fax: 805725	Datum : 02.06.2017
Zucton	degranzan	Probe: BS 9W-1
Zustant	dsgrenzen	Tiefe : 0,00-1,00 m
DIN 18 122		Bodenart : U,fs*,t'
Entnahmestelle	e: BS 9W-1 (0,00-1,00 m)	Labor - Nr. : 166
Ausgef. durch	: CH Hat	Entn. am : 16.05.2017

		Fließgrenze				Ausrollgrenze					
Behälter-Nr.		104	216	5	2a		303	14	218		
Zahl der Schläge		40	35	25	21						
Feuchte Probe + Behälter	m _r + m _B [g]	75.24	74.02	72.02	73.98		56.65	53.09	55.86		
Trockene Probe + Behälter	m _t + m _B [g]	70.01	69.22	66.39	68.64		55.71	52.15	54.98		
Behälter	m _в [g]	49.01	50.55	46.04	49.89		51.49	47.96	50.85		
Wasser	$m_f - m_t = m_w [g]$	5.23	4.80	5.63	5.34		0.94	0.94	0.88		
Trockene Probe	m _t [g]	21.00	18.67	20.35	18.75		4.22	4.19	4.13	Mittel	
Wassergehalt mw = w	[-]	0.249	0.257	0.277	0.285		0.223	0.224	0.213	0.220	

Płastizitätszahl $I_p = w_L - w_P = 0.056$

Liquiditätsindex $I_L = \frac{W_N - W_P}{I_P} = 0.089$

Konsistenzzahl $I_c = \frac{W_L - W_N}{I_p} = 0.911$

BCE BJÖRNSEN BERATENDE INGENIEURE

Sieb-Schlämmanalyse

168

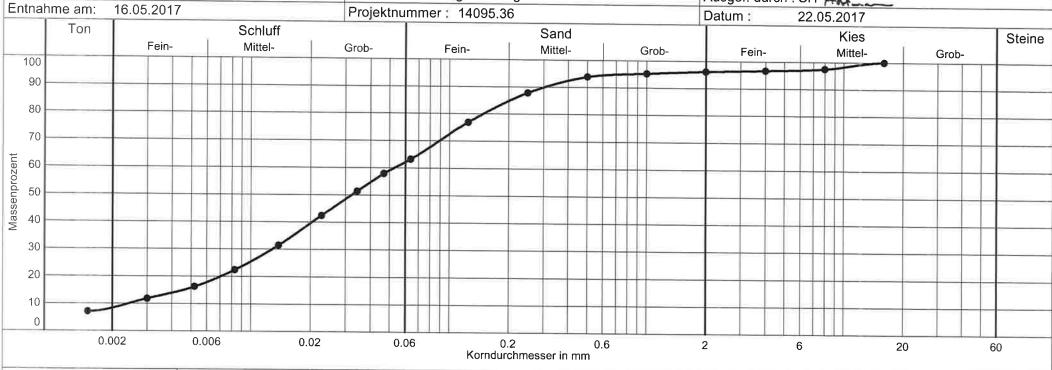
Versuchsart:

Labor Nr.:

Kornverteilung

DIN 18 123-7

Projekt : Iller - Hochwasserschutz

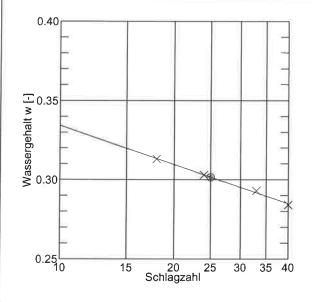

Kirchberg - Sinningen

Björnsen Beratende Ingenieure GmbH

Maria Trost 3, 56070 Koblenz

Tel. 0261/8851-0 Fax: 805725

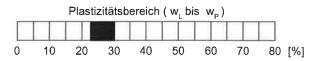
e-mail: info@bjoernsen.de



Probenbezeichnung	BS 9W-2 (1,00-1,50 m)
Entnahmestelle	BS 9W
Bodenart DIN 4022	U,t,fs
Bodengruppe nach DIN 18196	UL/TL
d60[mm]	0.053 mm
d10[mm]	0.002 mm
Ungleichförm. U	21.8
kf nach Hazen	- (Cu > 5)
kf nach Beyer	5.5E-008 m/s
kf nach Kaubisch	- (0.063 >= 60%)
kf nach Seiler	

	Björnsen Beratende Ing. GmbH	Projekt : Iller - HWS Kirchberg - Sinningen
EGG	Maria Trost 3	Projektnr.: 14095.36
Bonnes-Bolennochszorum	56070 Koblenz	Anlage ;
	Tel. 0261/8851-0 Fax: 805725	Datum : 30.05.2017
Zucton	degranzan	Probe: BS 9W-2
	dsgrenzen	Tiefe : 1,00-1,50 m
DIN 18 122		Bodenart : U,t,fs

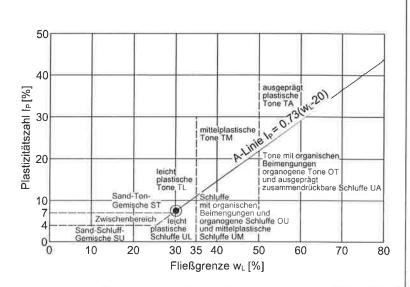
Labor - Nr.


Ausgef. durch : CH Had	Entn. am : 16.05.2017									
		F	ließgren:	eßgrenze			Ausrollgrenze			
Behälter-Nr.	2a	218	5	14		216	303	104		
Zahl der Schläge	40	33	24	18						
Feuchte Probe + Behälter m _f + m _B [g	70.59	80.21	70.02	82.38		56.37	57.01	54.81		
Trockene Probe + Behälter $m_t + m_B$ [g]	66.01	73.55	64.44	74.18		55.29	55.98	53.74		
Behälter m _B [g	49.88	50.83	46.03	47.96		50.55	51.49	49.01		
Wasser $m_f - m_t = m_w$ [g]	4.58	6.66	5.58	8.20		1.08	1.03	1.07		
Trockene Probe m _t [g]	16.13	22.72	18.41	26.22		4.74	4.49	4.73	Mittel	
Wassergehalt $\frac{m_w}{m_t} = w$ [-]	0.284	0.293	0.303	0.313		0.228	0.229	0.226	0.228	

Entnahmestelle: BS 9W-2 (1,00-1,50 m)

 $W_N = 0.259$ Wassergehalt = 0.302 Fließgrenze = 0.228 Ausrollgrenze

165



Plastizitätszahl $I_p = w_L - w_P$

Liquiditätsindex $I_L = \frac{W_N - W_P}{I_P}$

Konsistenzzahl $I_C = \frac{W_L - W_N}{I_P}$

BCC BJÖRNSEN BERATENDE INGENIEURE	Anlage: zu:							
Bestimmung des Glühverlusts		Entnahme	stelle:	BS 3D	BS 3D			
durch Glühen bei 550°C im Muffelofen nach DIN 18 128 -	GL	Tiefe:		s.u.				
Prüfungs-Nr.: 159 Bauvorhabe	n: 14095.36	Bodenart:		s.u.				
HWS Kirchberg-Sinningen		Art der Ent	nahme:	gestört				
Ausgef. durch: CH Hahaa Datu	n: 29.05.2017	Entnahme	am:	18.05.2017	durch:	BCE		
Bezeichnung der Probe	BS 3D							
Entnahmetiefe [m]:	0,0-0,4							
Bodenart nach DIN 4022:	U,fs,g,h							
Behälter-Nr.	Schale							
Masse der ungeglühten Probe mit Behälter $m_{ m d}$ + $m_{ m B}$ [70,570							
Masse der geglühten Probe mit Behälter $m_{\rm gl}$ + $m_{\rm B}$ [69,090							
Masse des Behälters m_{B} [51,960							
Massenverlust $(m_d+m_B)-(m_g+m_B)=\Delta m_{gl}$ [4]	1,480							
Trockenmasse des Bodens vor dem Glühen $m_{ m d}$ [ϵ] 18,610							
$(m_d+m_B)-m_B$								
Glühverlust $V_{\rm gl} = \Delta m_{\rm gl}/m_{\rm d}$ $V_{\rm gl}$ [] 0,080							

BJÖRNSEN BERATENDE INGE	NIEURE	A zı	nlage: u:				
Bestimmung des Kalkgehaltes Gasometrischer Versuch DIN 18 129 - G		Probenbezeichnung: Entnahmestelle:		BS 4D-2 BS 4D			
Prüfungs-Nr.: 161 Bauvorhaben: 14095.36 Iller - HWS Kirchberg-Sinningen Ausgeführt durch: 4 CH am:	06.06.2017	Tiefe: Bodenart: Art der Entnahn Entnahme am: durch:	ne:	0,4-0,8 m U,fs gestört 17.05.2017 BCE			
Bodenart DIN 4022 Teil 1: Bodengruppe DIN 18 196: Größtkorn des Bodens: Größtkorn der Untersuchungsprobe: Wassergehalt:	U,fs UL w =	1 m 0,063 m 0,197					
Trockenmasse der Probe Temperatur: absoluter Luftruck	$m_d =$ $T =$ $\rho_{Abs} =$	0,50 g 24,4 °C 993 ml		99	kPa		
Gasentwicklung nach Ablesung nach 30 s : Ablesung bei Versuchsende ;	V' _G = V _G =	4 mi 12,0 cm 21,6 cm					
Kalkgehalt V_{Ca} Volumen des $\text{CO}_2\text{-Gases}$ im Normzustand							
	21,6 * (273 +	268,4	æ	19,36	cm ³		
Masse des Karbonatanteiles $m_{\rm Ca} = 19,36$ * 0,00	01977 * 2,275	=	0,087	g			
Kalkgehalt				<u> </u>			
V _{Ca} = 0,087 0,5	i=		0,174	=	17,4%		

BIÖRNSEN BERA	TENDE	NGENIEURE			Anlage: zu:			
Bestimmung des Kalkgeh Gasometrischer Versuch DIN 1		Probenbeze Entnahmest		BS 7D-2 BS 7D 0,5-0,8 m U,t,fs gestört 17.05.2017				
Prüfungs-Nr.: 160 Bauvorhaben: 14095.36 Iller - HWS Kirchberg-Sinningen							Tiefe: Bodenart: Art der Entn:	
Ausgeführt durch:	СН	am:	07.06.2017	Entnahme a durch:	m.	17.05.2017 BCE		
Bodenart DIN 4022 Teil 1: Bodengruppe DIN 18 196: Größtkorn des Bodens: Größtkorn der Untersuchungspi Wassergehalt: Trockenmasse der Probe Temperatur: absoluter Luftruck: Gasentwicklung nach Ablesung nach 30 s: Ablesung bei Versuchsende:	robe:		U,t,fs UL w = m _d = T = p _{Abs} = V' _G = V _G =	1 0,063 0,24 0,50 24,2 1004 4 12,4 22,0	mm g °C mBar = min beendet cm³ cm³	100	kPa	
Volumen des CO ₂ -Gases im No	ormzustar	nd						
V ₀ = 100,4	*	22,0	+	268,4 24,2)	. =	19,96	cm³	
Masse des Karbonatanteiles								
<i>m</i> _{Ca} = 19,96	*	0,001977 * 2	,275	=:	0,090	g		
Kalkgehalt								
	0,090				0,180	#	18,0%	

Anlage A-4 Tabelle Laborergebnisse

Aufschluss	Entnahme-	Feld-	Wassergehalt	Siebung	Sieb-Schlämm	Korna	anteil	Bodengruppe		Zustands	grenzen		Kalk	Glühv.
Probe	bereich	ansprache		DIN 4022	DIN 4022	<0,06 mm	<2,0 mm	DIN 18196	w_L	W_P	I _P	I _C		
	[m]		[-]			Gew%	Gew%		[-]	[-]	[-]	[-]	[%]	[%]
BS 1D-1	0,00-0,50	U,g,s	0,185											
BS 2D-4	1,40-3,60	G,s,u'		G,s',u'		6	20	GU						
BS 3D-1	0,00-0,40	U,fs,g,h	0,115											8,0
BS 4D-2	0,40-0,80	U,fs	0,197										17,4	
BS 4D-3	0,80-3,00	G,s,u'		G,s',u'		7	24	GU						
BS 5W-2	0,60-0,85	U,fs	0,158											
BS 6D-3	0,75-1,20	U,t,s*,g'	0,234		U,t,s*,g'	49	91	UL/TL	0,284	0,229	0,055	0,909		
BS 7D-1	0,00-0,50	U,fs,g'	0,179											
BS 7D-2	0,50-0,80	U,t,fs	0,24										18,0	<u> </u>
BS 8D-1	0,00-0,50	U,fs,g'	0,161		T,u,fs,g	46	72	TM	0,390	0,240	0,150	1,527		
BS 8D-2 BS 8D-3	0,50-1,40 1,40-3,50	S,u* G,s,u'		G,s,u'	S,u*	38 6	99 18	SU*/ST* GU						
BS 8W-1	0,00-0,50	U,fs	0,268											
BS 8W-4	1,00-2,00	G,s	,	G,s		3	22	GI						
BS 9D-3	0,75-1,35	U,t,fs	0,187											
BS 9W-1	0,00-1,00	U,fs*,t'	0,225		U,fs*,t'	56	100	UL/TL	0,089	0,220	0,056	0,911		
BS 9W-2	1,00-1,50	U,t,fs	0,259	_	U,t,fs	62	97	UL/TL	0,302	0,228	0,074	0,581		

Anlage A-5

Dokumentation der chemischen Analysen

Anlage A-5 Seite 1

Eurofins Umwelt West GmbH - Hasenpfühlerweide 16 - DE-67346 - Speyer

Björnsen Beratende Ingenieure GmbH Maria Trost 3 56070 Koblenz

Titel: Prüfbericht zu Auftrag 01726953

Prüfberichtsnummer: AR-17-JN-002681-01

Auftragsbezeichnung: HWS Sinningen

Anzahl Proben: 1

Probenart: Feststoff
Probeneingangsdatum: 23.05.2017

Prüfzeitraum: 23.05.2017 - 31.05.2017

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Proben nicht durch unser Labor oder in unserem Auftrag genommen wurden, wird die Verantwortung für die Richtigkeit der Probenahme abgelehnt. Dieser Prüfbericht ist nur mit Unterschrift gültig und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie jederzeit unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Durch die DAkkS nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14078-01-00) aufgeführten Akkreditierungsumfang.

Carsten Blech Digital signiert, 31.05.2017

Prüfleiter Carsten Blech Tel. +49 6232 87 677 21 Prüfleitung

Anlage A-5 Seite 2

				Probenbeze	ichnung	MP-4
				Probennum	mer	017108761
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PAK aus der Originalsubs	stanz		1			
Naphthalin	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	< 0,5
Acenaphthylen	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	< 0,5
Acenaphthen	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	1,2
Fluoren	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	< 0,5
Phenanthren	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	0,6
Anthracen	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	< 0,5
Fluoranthen	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	< 0,5
Pyren	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	< 0,5
Benzo[a]anthracen	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	< 0,5
Chrysen	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	< 0,5
Benzo[b]fluoranthen	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	< 0,5
Benzo[k]fluoranthen	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	< 0,5
Benzo[a]pyren	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	< 0,5
Indeno[1,2,3-cd]pyren	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	< 0,5
Dibenzo[a,h]anthracen	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	< 0,5
Benzo[ghi]perylen	AN	LG004	DIN ISO 18287	0,5	mg/kg OS	< 0,5
Summe 16 EPA-PAK exkl.BG	AN	LG004	DIN ISO 18287		mg/kg OS	1,8

Erläuterungen

BG: Bestimmungsgrenze

Lab.: Kürzel des durchführenden Labors Akkr.: Akkreditierungskürzel des Prüflabors

Die mit AN gekennzeichneten Parameter wurden von Eurofins Umwelt West GmbH (Wesseling) analysiert. Die mit LG004 gekennzeichneten Parameter sind nach DIN EN ISO/IEC 17025:2005 D-PL-14078-01-00 akkreditiert.

Anlage A-5 Seite 3

Eurofins Umwelt West GmbH - Hasenpfühlerweide 16 - DE-67346 - Speyer

Björnsen Beratende Ingenieure GmbH Maria Trost 3 56070 Koblenz

Titel: Prüfbericht zu Auftrag 01726952

Prüfberichtsnummer: AR-17-JN-002832-01

Auftragsbezeichnung: HWS Sinningen

Anzahl Proben: 3

Probenart: Boden

Probenahmedatum: 22.05.2017
Probeneingangsdatum: 23.05.2017

Prüfzeitraum: 23.05.2017 - 06.06.2017

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Proben nicht durch unser Labor oder in unserem Auftrag genommen wurden, wird die Verantwortung für die Richtigkeit der Probenahme abgelehnt. Dieser Prüfbericht ist nur mit Unterschrift gültig und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie jederzeit unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Durch die DAkkS nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14078-01-00) aufgeführten Akkreditierungsumfang.

Carsten Blech Digital signiert, 06.06.2017

Prüfleiter Dr. Eva Siedler Tel. +49 6232 87 677 21 Prüfleitung

Anlage A-5 Seite 4

				Probenbeze	ichnung	MP-1	MP-2	MP-3
					edatum/ -zeit	22.05.2017	22.05.2017	22.05.2017
				Probennum	mer	017108758	017108759	017108760
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
Probenvorbereitung Feststo	ffe							
Probenmenge inkl. Verpackung	AN		DIN 19747:2009-07		kg	1,9	0,7	0,8
Fremdstoffe (Art)	AN	LG004	DIN 19747:2009-07			nein	nein	nein
Fremdstoffe (Menge)	AN	LG004	DIN 19747:2009-07		g	0,0	0,0	0,0
Siebrückstand > 10mm	AN	LG004	DIN 19747:2009-07			ja	ja	nein
Physikalisch-chemische Ke	nngrö	ßen au	⊔ ıs der Originalsubs	tanz				
Trockenmasse	AN		DIN EN 14346	0,1	Ma%	93,0	82,5	87,5
Anionen aus der Originalsul	hstanz	,						
Cyanide, gesamt	AN		DIN EN ISO 17380	0,5	mg/kg TS	< 0.5	0,8	0,9
					mg/kg 10	70,0	0,0	0,0
Elemente aus dem Königsw		1	1		ma/ka TC	7.7	7.0	6.0
Arsen (As)	AN AN	LG004	DIN EN ISO 17294-2	0,8	mg/kg TS	7,7 10	7,3	6,0
Blei (Pb)		LG004	DIN EN ISO 17294-2		mg/kg TS	-	15	11
Cadmium (Cd)	AN	LG004	DIN EN ISO 17294-2	0,2	mg/kg TS	< 0,2	0,3	0,2
Chrom (Cr)	AN	LG004	DIN EN ISO 17294-2	1	mg/kg TS	24	22	13
Kupfer (Cu)	AN	LG004	DIN EN ISO 17294-2	1	mg/kg TS	18	17	13
Nickel (Ni)	AN	LG004	DIN EN ISO 17294-2	1	mg/kg TS	20	24	16
Quecksilber (Hg)	AN	LG004	DIN EN ISO 12846	0,07	mg/kg TS	< 0,07	0,08	< 0,07
Thallium (TI)	AN	LG004	DIN EN ISO 17294-2	0,2	mg/kg TS	< 0,2	< 0,2	< 0,2
Zink (Zn)	AN		DIN EN ISO 17294-2	1	mg/kg TS	49	53	45
Organische Summenparame			_		T			
TOC	AN		DIN EN 13137	0,1	Ma% TS	0,4	1,3	1,7
EOX	AN	LG004	DIN 38414-S17	1,0	mg/kg TS	< 1,0	< 1,0	< 1,0
Kohlenwasserstoffe C10-C22	AN	LG004	DIN EN 14039	40	mg/kg TS	< 40	< 40	< 40
Kohlenwasserstoffe C10-C40	AN	LG004	DIN EN 14039	40	mg/kg TS	< 40	< 40	< 40
BTEX und aromatische Koh	lenwa	sserst	offe aus der Origin	alsubstanz				
Benzol	AN	LG004	DIN 38407-F9-1 mod.	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Toluol	AN	LG004	DIN 38407-F9-1 mod.	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Ethylbenzol	AN	LG004	DIN 38407-F9-1 mod.	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
m-/-p-Xylol	AN	LG004	DIN 38407-F9-1 mod.	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
o-Xylol	AN	LG004	DIN 38407-F9-1 mod.	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Summe BTEX	AN	LG004	DIN 38407-F9-1 mod.		mg/kg TS	(n. b.) 1)	(n. b.) 1)	(n. b.) 1)
LHKW aus der Originalsubs	tanz							
Dichlormethan	AN	LG004	DIN EN ISO 22155	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
trans-1,2-Dichlorethen	AN	LG004	DIN EN ISO 22155	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
cis-1,2-Dichlorethen	AN	LG004	DIN EN ISO 22155	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Chloroform (Trichlormethan)	AN	LG004	DIN EN ISO 22155	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
1,1,1-Trichlorethan	AN	LG004	DIN EN ISO 22155	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Tetrachlormethan	AN	LG004	DIN EN ISO 22155	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Trichlorethen	AN	LG004	DIN EN ISO 22155	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Tetrachlorethen	AN	LG004	DIN EN ISO 22155	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
1,1-Dichlorethen	AN	LG004	DIN EN ISO 22155	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
1,2-Dichlorethan	AN	LG004	DIN EN ISO 22155	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Summe LHKW (10 Parameter)	AN	LG004	DIN EN ISO 22155		mg/kg TS	(n. b.) 1)	(n. b.) 1)	(n. b.) 1)

Anlage A-5 Seite 5

				Probenbezei	ichnung	MP-1	MP-2	MP-3
					edatum/ -zeit	22.05.2017	22.05.2017	22.05.2017
				Probennum		017108758	017108759	017108760
Parameter	Lab.	Δkkr	Methode	BG	Einheit	011100100	011100100	011100100
PAK aus der Originalsubsta		AKKI.	Methode		Lillion			
Naphthalin	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0.05	< 0.05	< 0.05
Acenaphthylen	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Acenaphthen				0,05	mg/kg TS	< 0.05	< 0.05	< 0.05
•	AN	LG004	DIN ISO 18287			,	,	,
Fluoren	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0.05	< 0,05
Phenanthren	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	0,11	< 0,05	< 0,05
Anthracen	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Fluoranthen	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	0,21	0,10	< 0,05
Pyren	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	0,16	0,08	< 0,05
Benzo[a]anthracen	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	0,09	< 0,05	< 0,05
Chrysen	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	0,08	< 0,05	< 0,05
Benzo[b]fluoranthen	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	0,12	0,08	< 0,05
Benzo[k]fluoranthen	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[a]pyren	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	0,09	< 0,05	< 0,05
Indeno[1,2,3-cd]pyren	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	0,07	< 0,05	< 0,05
Dibenzo[a,h]anthracen	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[ghi]perylen	AN	LG004	DIN ISO 18287	0,05	mg/kg TS	0,07	< 0,05	< 0,05
Summe 16 EPA-PAK exkl.BG	AN	LG004	DIN ISO 18287		mg/kg TS	1,00	0,26	(n. b.) ¹⁾
Summe 15 PAK ohne Naphthalin exkl.BG	AN	LG004	DIN ISO 18287		mg/kg TS	1,00	0,26	(n. b.) 1)
PCB aus der Originalsubsta	ınz							
PCB 28	AN	LG004	DIN EN 15308	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
PCB 52	AN	LG004	DIN EN 15308	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
PCB 101	AN	LG004	DIN EN 15308	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
PCB 153	AN	LG004	DIN EN 15308	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
PCB 138	AN	LG004	DIN EN 15308	0,01	mg/kg TS	< 0.01	< 0,01	< 0.01
PCB 180	AN	LG004	DIN EN 15308	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
Summe 6 DIN-PCB exkl. BG	AN		DIN EN 15308	0,01	mg/kg TS	(n. b.) 1)	(n. b.) 1)	(n. b.) 1)
PCB 118	AN	LG004	DIN EN 15308	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01
Summe PCB (7)	AN		DIN EN 15308	0,01	mg/kg TS	(n. b.) 1)	(n. b.) 1)	(n. b.) 1)
							(11. 0.)	(11. D.)
Physikalisch-chemische Ke			T	eieiuat nach i	JIN EN 12457		0.0	0.4
pH-Wert	AN	LG004	DIN 38404-C5		01	10,7	8,3	8,1
Leitfähigkeit bei 25°C	AN		DIN EN 27888	5	μS/cm	288	128	179
Anionen aus dem 10:1-Schi	ittelelu	ıat nad	h DIN EN 12457-4					
Chlorid (CI)	AN	LG004	DIN EN ISO 10304-1	1,0	mg/l	3,2	< 1,0	< 1,0
Sulfat (SO4)	AN	LG004	DIN EN ISO 10304-1	1,0	mg/l	18	< 1,0	1,2
Cyanide, gesamt	AN	LG004	DIN EN ISO 14403-2	0,005	mg/l	< 0,005	< 0,005	< 0,005

Anlage A-5 Seite 6

				Probenbezei	chnung	MP-1	MP-2	MP-3	
				Probenahme	datum/ -zeit	22.05.2017	22.05.2017	22.05.2017	
				Probennumr	ner	017108758	017108759	017108760	
Parameter	Lab.	Akkr.	Methode	BG	Einheit				
Elemente aus dem 10:1-	ch DIN EN 12457-	4							
Arsen (As)	AN	LG004	DIN EN ISO 17294-2	0,001	mg/l	0,003	0,001	0,001	
Blei (Pb)	AN	LG004	DIN EN ISO 17294-2	0,001	mg/l	< 0,001	< 0,001	< 0,001	
Cadmium (Cd)	AN	LG004	DIN EN ISO 17294-2	0,0003	mg/l	< 0,0003	< 0,0003	< 0,0003	
Chrom (Cr)	AN	LG004	DIN EN ISO 17294-2	0,001	mg/l	0,006	0,002	< 0,001	
Kupfer (Cu)	AN	LG004	DIN EN ISO 17294-2	0,005	mg/l	0,026	< 0,005	< 0,005	
Nickel (Ni)	AN	LG004	DIN EN ISO 17294-2	0,001	mg/l	0,002	< 0,001	< 0,001	
Quecksilber (Hg)	AN	LG004	DIN EN ISO 12846	0,0002	mg/l	< 0,0002	< 0,0002	< 0,0002	
Zink (Zn)	AN	LG004	DIN EN ISO 17294-2	0,01	mg/l	< 0,01	< 0,01	< 0,01	
Organische Summenparameter aus dem 10:1-Schüttelelu				at nach DIN EN	12457-4				
Phenolindex, wasserdampfflüchtig	AN	LG004	DIN EN ISO 14402	0,010	mg/l	< 0,010	< 0,010	< 0,010	

Erläuterungen

BG: Bestimmungsgrenze

Lab.: Kürzel des durchführenden Labors Akkr.: Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

Die mit AN gekennzeichneten Parameter wurden von Eurofins Umwelt West GmbH (Wesseling) analysiert. Die mit LG004 gekennzeichneten Parameter sind nach DIN EN ISO/IEC 17025:2005 D-PL-14078-01-00 akkreditiert.

¹⁾ nicht berechenbar

Projekt: Iller - HWS Kirchberg - Sinningen

Projektnummer: 2014095.36 Bewertungsdatum: 19.06.2017

Ausführendes Labor: Eurofins Umwelt West GmbH

Probenart: Ackerboden

Zuordnungswerte Feststoff und Eluat für Recyclingbaustoffe bzw. nicht aufbereiteten Bauschutt

Feststoffwerte Boden

Proben-Nr.:	Dim.	LA	GA M 20/20	03 - Bauscl	hutt	MP-1
Probenahmedatum:		Z 0	Z 1.1	Z1.2	Z 2	22.5.17
Art				(hydrogeol.		Gemisch
Probennummer				günst. Geb	.)	017108758
Arsen	mg/kg TS	20	-	-	-	7,7
Blei	mg/kg TS	100	-	-	-	10
Cadmium	mg/kg TS	1	-	-	-	<0,2
Chrom (gesamt)	mg/kg TS	50	-	-	-	24
Kupfer	mg/kg TS	40	-	-	-	18
Nickel	mg/kg TS	40	-	-	-	20
Quecksilber	mg/kg TS	0,3	-	-	-	<0,07
Zink	mg/kg TS	120	-	-	-	49
EOX	mg/kg TS	1	3	5	10	<1,0
Kohlenwasserstoffe	mg/kg TS	100	300	500	1.000	<40
Σ PCB ₆	mg/kg TS	0,02	0,10	0,50	1,0	n.b.
Σ PAK ₁₆	mg/kg TS	1	5	15	75	1

n.b. = Summenwert nicht berechnebar, da alle Einzelparameter < BG

Eluatwerte Boden

Parameter	Dim.	LAGA	M 20 - Bod	en Tab. II.1.	.2-3/ -5	MP-1
		Z 0	Z 1.1	Z 1.2	Z 2	22.5.17
						017108758
pH-Wert 1)	-	7,0 - 12,5	7,0 - 12,5	7,0 - 12,5	7,0 - 12,5	10,7
elektr. Leitfähigkeit	μS/cm	500	1.500	2.500	3.000	288
Chlorid	mg/l	10	20	40	150	3,2
Sulfat	mg/l	50	150	300	600	18
Cyanid (ges.)	μg/l	5	5	10	20	<5
Arsen	μg/l	10	10	40	50	3
Blei	μg/l	20	40	100	100	<1
Cadmium	μg/l	2,0	2,0	5	5	<0,3
Chrom (ges.)	μg/l	15,0	30,0	75	100	6
Kupfer	μg/l	50	50	150	200	26
Nickel	μg/l	40	50	100	100	2
Quecksilber	μg/l	0,2	0,2	1	2	<0,2
Zink	μg/l	100	100	300	400	<10
Phenolindex	μg/l	<10	10	50	100	<10

¹⁾ Niedrigere pH-Werte stellen allein kein Ausschlußkriterium dar. Bei Überschreitungen ist die Ursache zu prüfen.

Einstufung gemäß Feststoffwerten	Z0
Einstufung gemäß Eluatwerten	Z0
Gesamteinstufung	Z0
Wesentlicher Kontaminationsparameter	-

Projekt: Iller - HWS Kirchberg - Sinningen

Projektnummer: 2014095.36 Bewertungsdatum: 19.06.2017

Ausführendes Labor: Eurofins Umwelt West GmbH

Probenart: Ackerboden

Feststoffwerte Boden

Proben-Nr.:	Dim.	L	AGA M 20	- Boden Ta	b. II.1.2-2/ -	4	MP-2
Probenahmedatum:		Z 0	Z 0*	Z 1	Z 1	Z 2	22.5.17
Art		(Lehm/			(hydrogeol		Ackerboden
Probennummer		Schluff)			günst. Geb).)	017108759
Arsen	mg/kg TS	15	15	45	45	150	7,3
Blei	mg/kg TS	70	140	210	210	700	15
Cadmium	mg/kg TS	1	1	3	3	10	0,3
Chrom (gesamt)	mg/kg TS	60	120	180	180	600	22
Kupfer	mg/kg TS	40	80	120	120	400	17
Nickel	mg/kg TS	50	100	150	150	500	24
Thallium	mg/kg TS	0,7	0,7	2,1	2,1	7	<0,2
Quecksilber	mg/kg TS	0,5	1,0	1,5	1,5	5	0,08
Zink	mg/kg TS	150	300	450	450	1.500	53
Cyanide, gesamt	mg/kg TS			3	3	10	0,8
TOC	(Masse-%)	0,5	0,5	1,5	1,5	5,0	1,3
EOX	mg/kg TS	1	1	3	3	10	<1,0
Kohlenwasserstoffe _{C10-C22}	mg/kg TS	100	200	300	300	1.000	<40
Kohlenwasserstoffe _{C10-C40}	mg/kg TS		400	600	600	2.000	<40
Σ BTEX	mg/kg TS	1	1	1	1	1	n.b.
Σ LHKW	mg/kg TS	1	1	1	1	1	n.b.
Σ PCB ₆	mg/kg TS	0,05	0,10	0,15	0,15	0,5	n.b.
Σ PAK ₁₆	mg/kg TS	3	3	3	9	30	0,26
Benzo(a)pyren	mg/kg TS	0,3	0,6	0,9	0,9	3	<0,05

n.b. = Summenwert nicht berechnebar, da alle Einzelparameter < BG

Fluatwerte Boden

zidatwerte boderi									
Parameter	Dim.	L	LAGA M 20 - Boden Tab. II.1.2-3/ -5						
		Z 0	Z 0*	Z 1.1	Z 1.2	Z 2	22.5.17		
							017108759		
pH-Wert 1)	-	6,5-9,5	6,5-9,5	6,5-9,5	6-12	5,5-12	8,3		
elektr. Leitfähigkeit	μS/cm	250	250	250	1.500	2.000	128		
Chlorid	mg/l	30	30	30	50	100	<1,0		
Sulfat	mg/l	20	20	20	50	200	<1,0		
Cyanid (ges.)	μg/l	5	5	5	10	20	<5		
Arsen	μg/l	14	14	14	20	60	1		
Blei	μg/l	40	40	40	80	200	<1		
Cadmium	μg/l	1,5	1,5	1,5	3	6	<0,3		
Chrom (ges.)	μg/l	12,5	12,5	12,5	25	60	2		
Kupfer	μg/l	20	20	20	60	100	<5		
Nickel	μg/l	15	15	15	20	70	<1		
Quecksilber	μg/l	< 0,5	< 0,5	< 0,5	1	2	<0,2		
Zink	μg/l	150	150	150	200	600	<10		
Phenolindex	μg/l	20	20	20	40	100	<10		

¹⁾ Niedrigere pH-Werte stellen allein kein Ausschlußkriterium dar. Bei Überschreitungen ist die Ursache zu prüfen.

Einstufung gemäß Feststoffwerten einschließlich TOC	Z1	
Einstufung gemäß Feststoffwerten ohne TOC	Z0	
Einstufung gemäß Eluatwerten	Z0	
Gesamteinstufung einschließlich TOC	Z1	
Gesamteinstufung ohne TOC	Z0	
Wesentlicher Kontaminationsparameter		
I vvesentilicher Kontaninationsparameter	Ackerboden	

Projekt: Iller - HWS Kirchberg - Sinningen

Projektnummer: 2014095.36 Bewertungsdatum: 19.06.2017

Ausführendes Labor: Eurofins Umwelt West GmbH

Probenart: Ackerboden

Feststoffwerte Boden

Proben-Nr.:	Dim.	L	AGA M 20	- Boden Ta	b. II.1.2-2/ -	4	MP-3
Probenahmedatum:		Z 0	Z 0*	Z 1	Z 1	Z 2	22.5.17
Art		(Lehm/			(hydrogeol.		Ackerboden
Probennummer		Schluff)			günst. Geb	.)	017108760
Arsen	mg/kg TS	15	15	45	45	150	6
Blei	mg/kg TS	70	140	210	210	700	11
Cadmium	mg/kg TS	1	1	3	3	10	0,2
Chrom (gesamt)	mg/kg TS	60	120	180	180	600	13
Kupfer	mg/kg TS	40	80	120	120	400	13
Nickel	mg/kg TS	50	100	150	150	500	16
Thallium	mg/kg TS	0,7	0,7	2,1	2,1	7	<0,2
Quecksilber	mg/kg TS	0,5	1,0	1,5	1,5	5	<0,07
Zink	mg/kg TS	150	300	450	450	1.500	45
Cyanide, gesamt	mg/kg TS			3	3	10	0,9
TOC	(Masse-%)	0,5	0,5	1,5	1,5	5,0	1,7
EOX	mg/kg TS	1	1	3	3	10	<1,0
Kohlenwasserstoffe _{C10-C22}	mg/kg TS	100	200	300	300	1.000	<40
Kohlenwasserstoffe _{C10-C40}	mg/kg TS		400	600	600	2.000	<40
Σ BTEX	mg/kg TS	1	1	1	1	1	n.b.
Σ LHKW	mg/kg TS	1	1	1	1	1	n.b.
Σ PCB ₆	mg/kg TS	0,05	0,10	0,15	0,15	0,5	n.b.
Σ PAK ₁₆	mg/kg TS	3	3	3	9	30	n.b.
Benzo(a)pyren	mg/kg TS	0,3	0,6	0,9	0,9	3	<0,05

n.b. = Summenwert nicht berechnebar, da alle Einzelparameter < BG

Eluatwerte Boden

Parameter	Dim.	L	AGA M 20	- Boden Tal	b. II.1.2-3/ -	5	MP-3
		Z 0	Z 0*	Z 1.1	Z 1.2	Z 2	22.5.17
							017108760
pH-Wert 1)	-	6,5-9,5	6,5-9,5	6,5-9,5	6-12	5,5-12	8,1
elektr. Leitfähigkeit	μS/cm	250	250	250	1.500	2.000	179
Chlorid	mg/l	30	30	30	50	100	<1,0
Sulfat	mg/l	20	20	20	50	200	<1,0
Cyanid (ges.)	μg/l	5	5	5	10	20	<5
Arsen	μg/l	14	14	14	20	60	1
Blei	μg/l	40	40	40	80	200	<1
Cadmium	μg/l	1,5	1,5	1,5	3	6	<0,3
Chrom (ges.)	μg/l	12,5	12,5	12,5	25	60	<1
Kupfer	μg/l	20	20	20	60	100	<5
Nickel	μg/l	15	15	15	20	70	<1
Quecksilber	μg/l	< 0,5	< 0,5	< 0,5	1	2	<0,2
Zink	μg/l	150	150	150	200	600	<10
Phenolindex	μg/l	20	20	20	40	100	<10

¹⁾ Niedrigere pH-Werte stellen allein kein Ausschlußkriterium dar. Bei Überschreitungen ist die Ursache zu p

Einstufung gemäß Feststoffwerten einschließlich TOC	Z2
Einstufung gemäß Feststoffwerten ohne TOC	Z0
Einstufung gemäß Eluatwerten	Z0
Gesamteinstufung einschließlich TOC	Z2
Gesamteinstufung ohne TOC	Z0
Wesentlicher Kontaminationsparameter	TOC im
	Ackerboden

Anlage A-6

Standsicherheitsberechnungen Dammbauwerk

1 Standsicherheit Dammbauwerk

1.1 Berechnung der Sickerlinie im Damm, Potentialverteilung

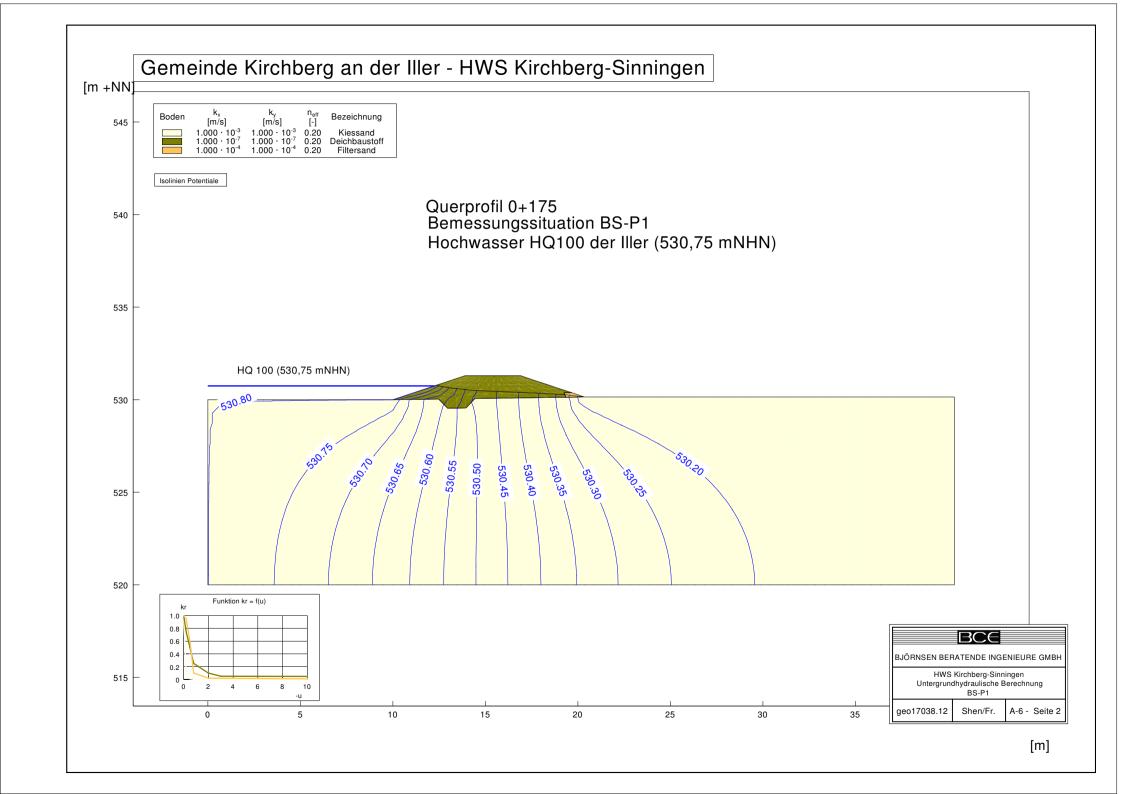
Die Berechnungen der Potentialdruckverteilungen erfolgen mit Hilfe des FE-Programms SS-FLOW-2D Version 10.07 von der Firma GGU.

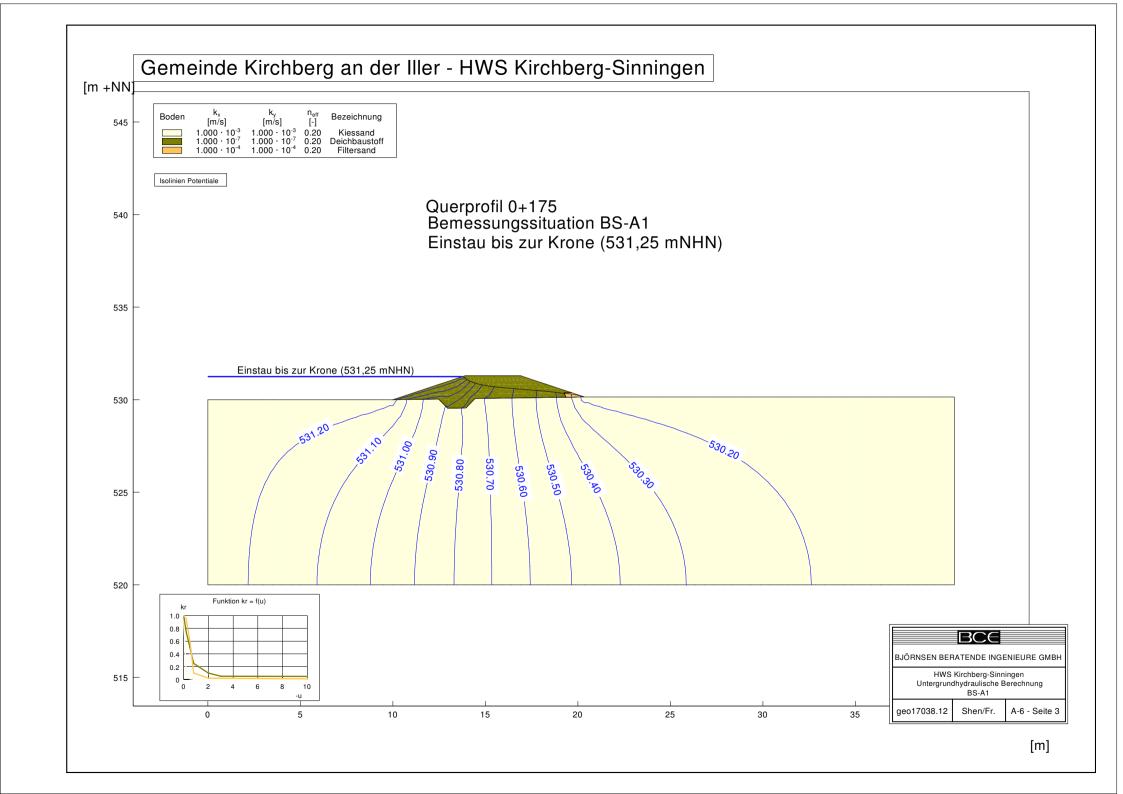
Die Randpotentiale werden entsprechend den vorgegebenen Wasserständen angesetzt. Es wird von stationären Verhältnissen ausgegangen.

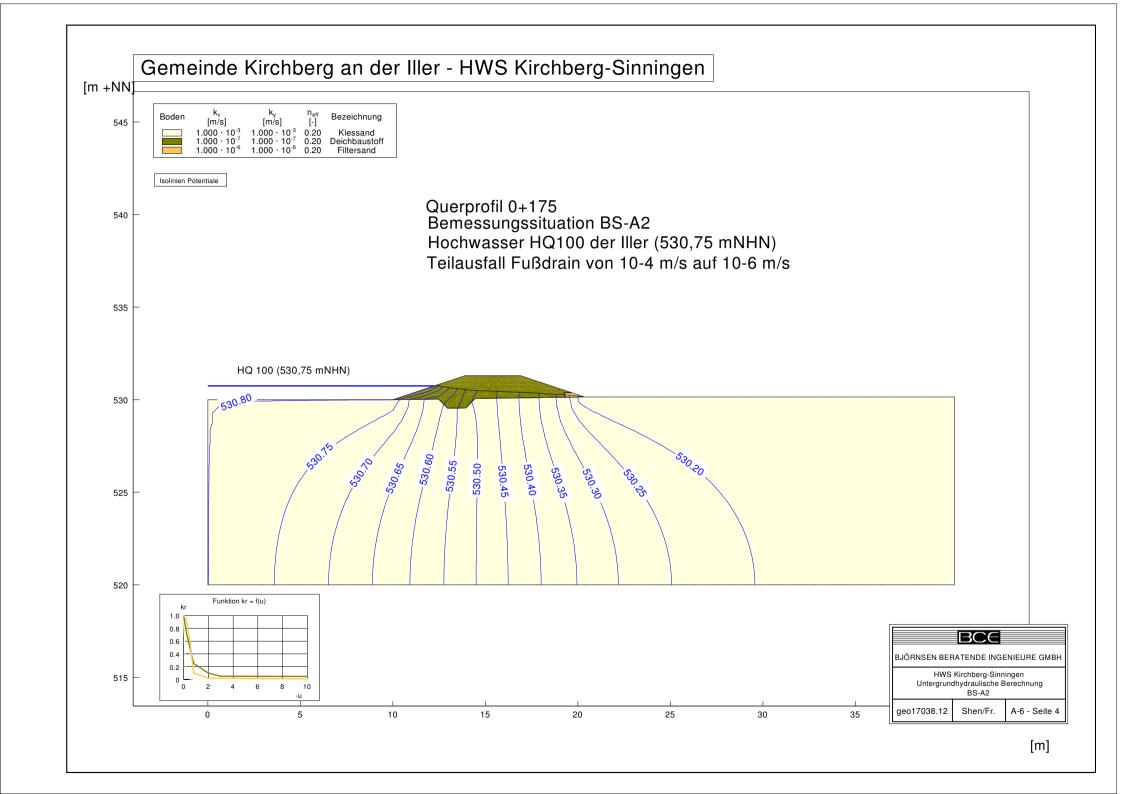
Das Netz und die Randbedingungen sind in der nachfolgenden Skizze dargestellt.

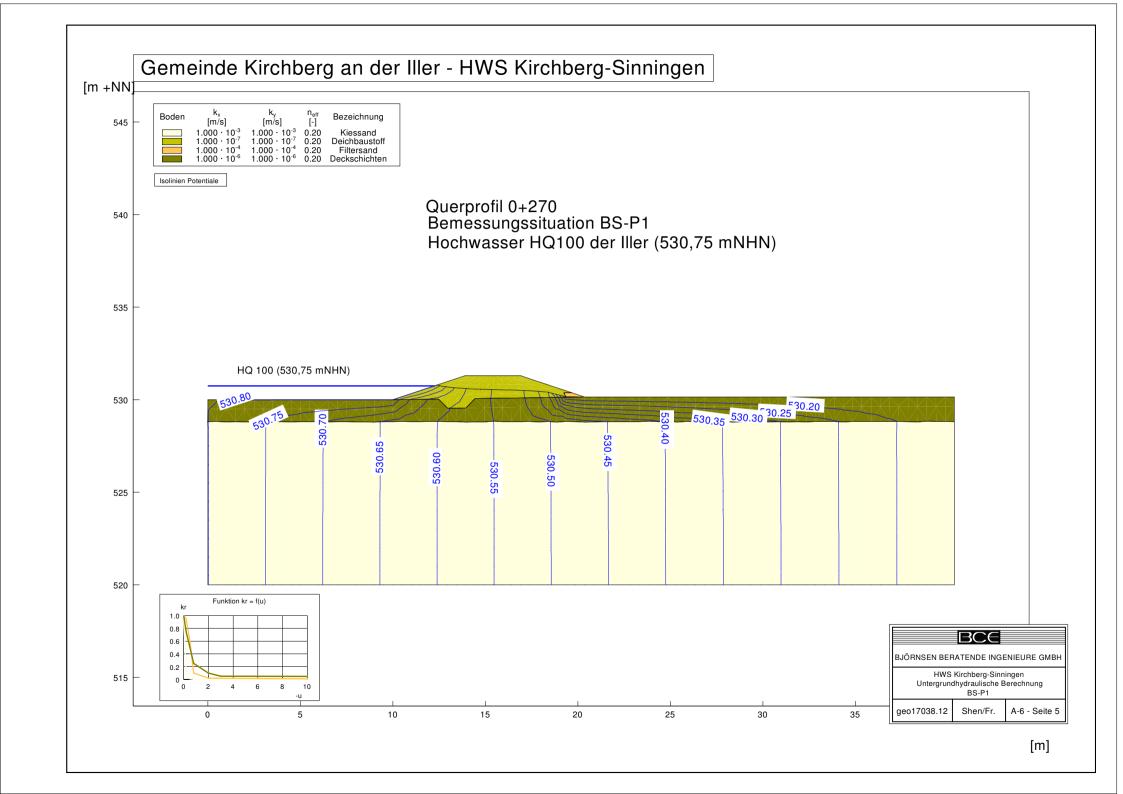
Randbedingung Wasserseite = Bemessungshochwasser HQ 100 530,75 mNHN Ca. 2 x Deichaufstandsebene = 20 m

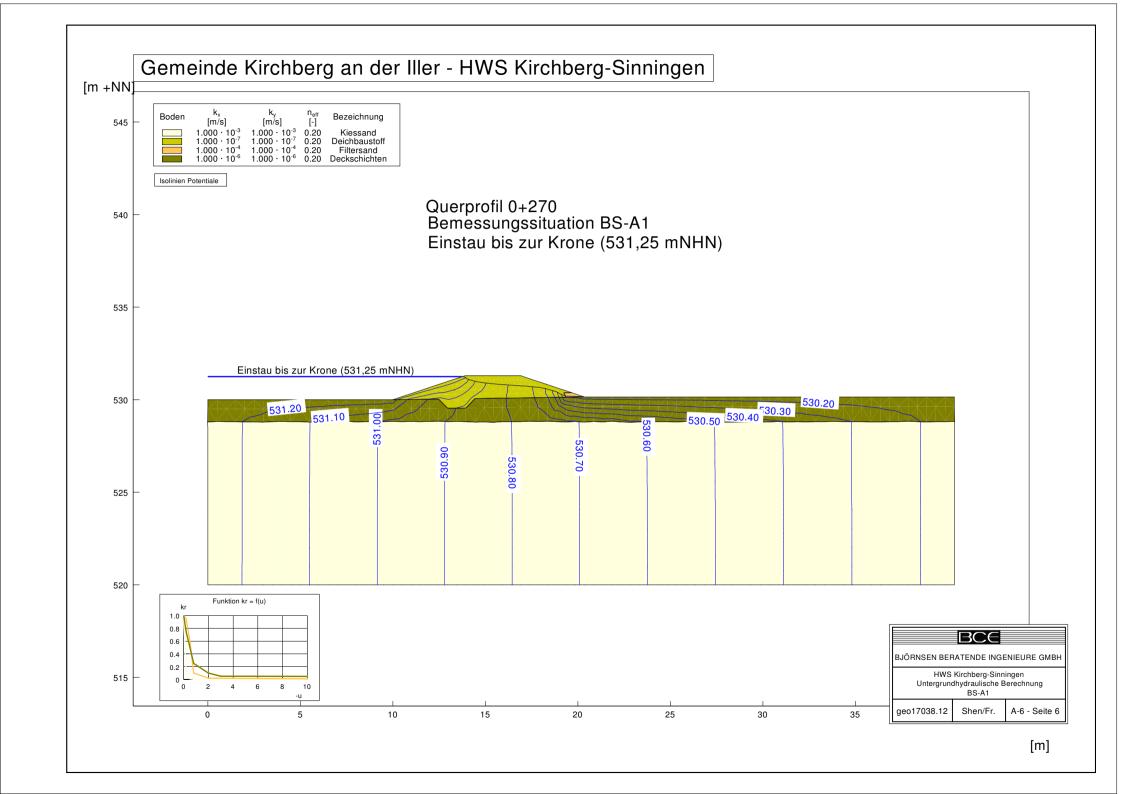
Netz und Randbedingungen

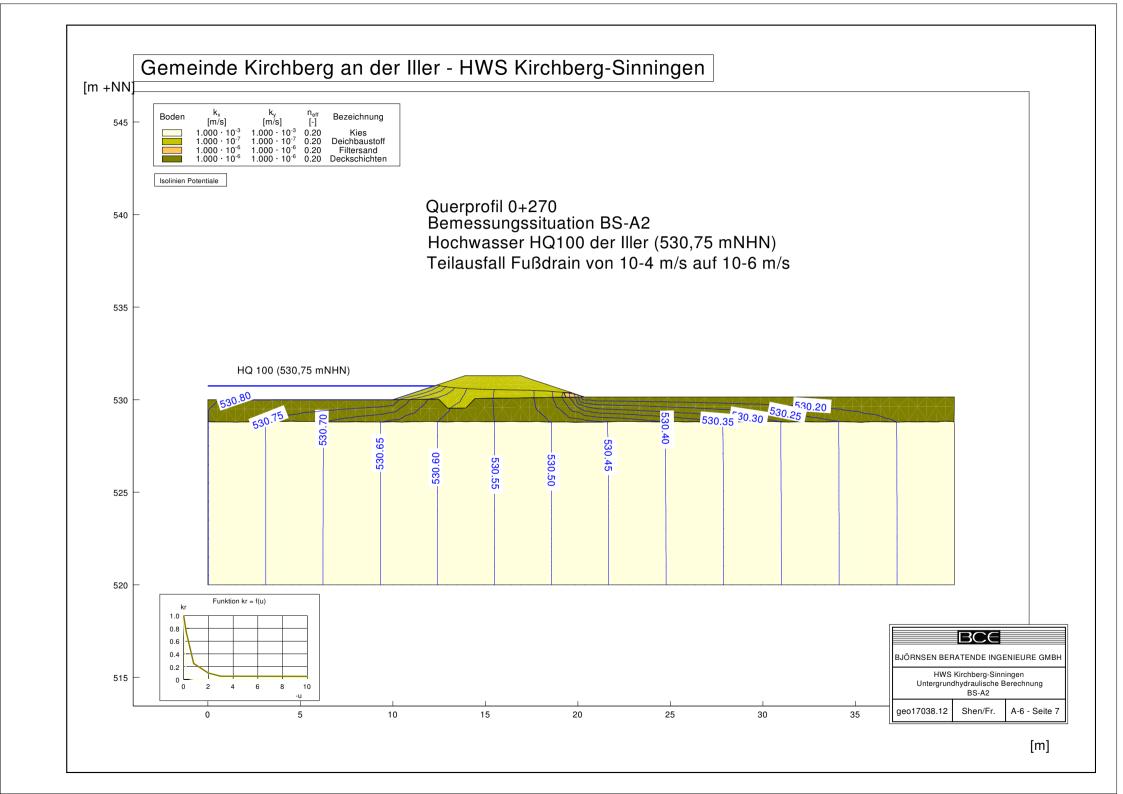

Abbildung 1: Netz und Randbedingungen


Die Ergebnisse der untergrundhydraulischen Berechnungen werden direkt an das Böschungsbruchprogramm übergeben.


Es werden Berechnungen für die beiden Querprofile 0+175 (ohne Deckschicht) und 0+270 (mit Deckschicht) durchgeführt. Die Kubatur und Wasserstände sind identisch. Jedoch wird bei QP 0+270 eine 1,2 m starke Deckschicht berücksichtigt.


Die Sickerlinie tritt in keiner Bemessungssituation aus der luftseitigen Böschung aus.


Die Ergebnisse sind nachfolgend dargestellt.



1.2 Globale Standsicherheit der Deichböschungen

Die Böschungsbruchberechnungen im Querschnitt 0+175 werden mit Hilfe des Programms Stability Version 8.35 von GGU durchgeführt.

Dieses berechnet die Standsicherheit nach EC 7/ DIN 4084 auf der Grundlage des Teilsicherheitskonzeptes und zeigt den Ausnutzungsgrad μ an. Die Standsicherheit ist bei einem Ausnutzungsgrad μ <1,0 gegeben.

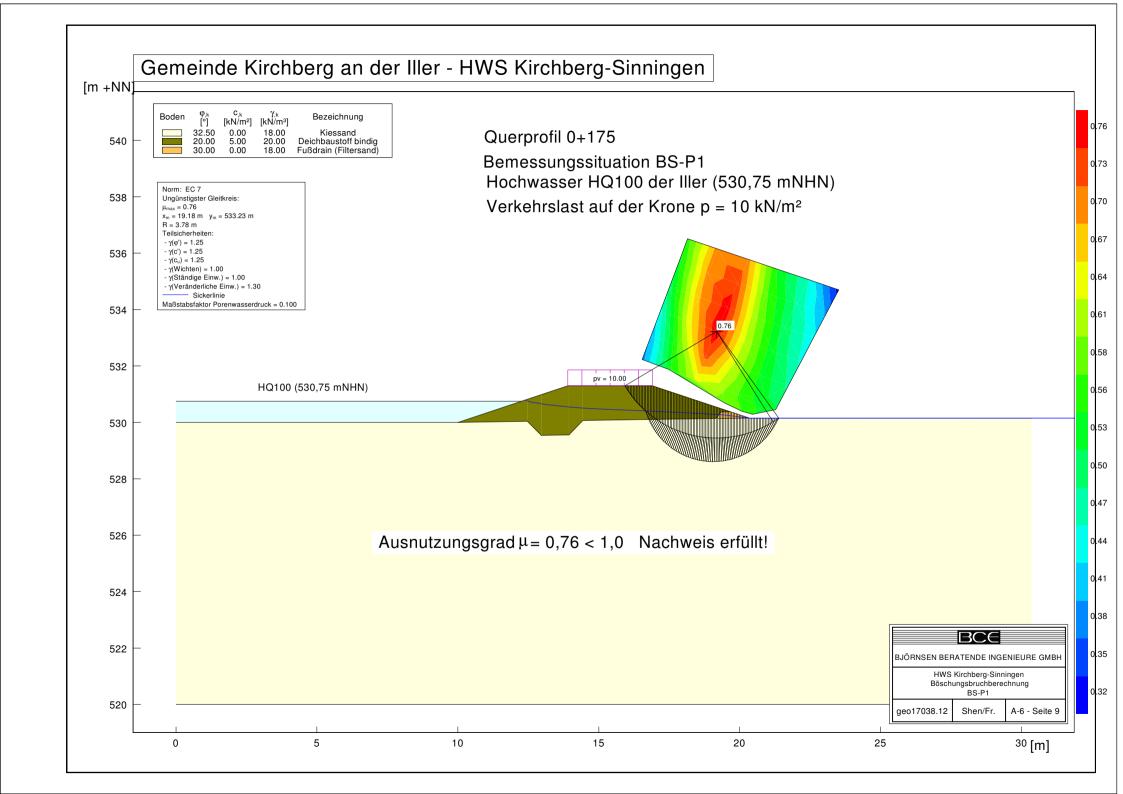
Entsprechend EC 7/ DIN 1054:2010-12 werden die charakteristischen Bodenkennwerte auf der Widerstandsseite durch die Teilsicherheitsbeiwerte abgemindert und die Belastungen auf der Einwirkungsseite mit einem Teilsicherheitsbeiwert beaufschlagt. Stützende Verkehrslasten werden im Programm nicht berücksichtigt.

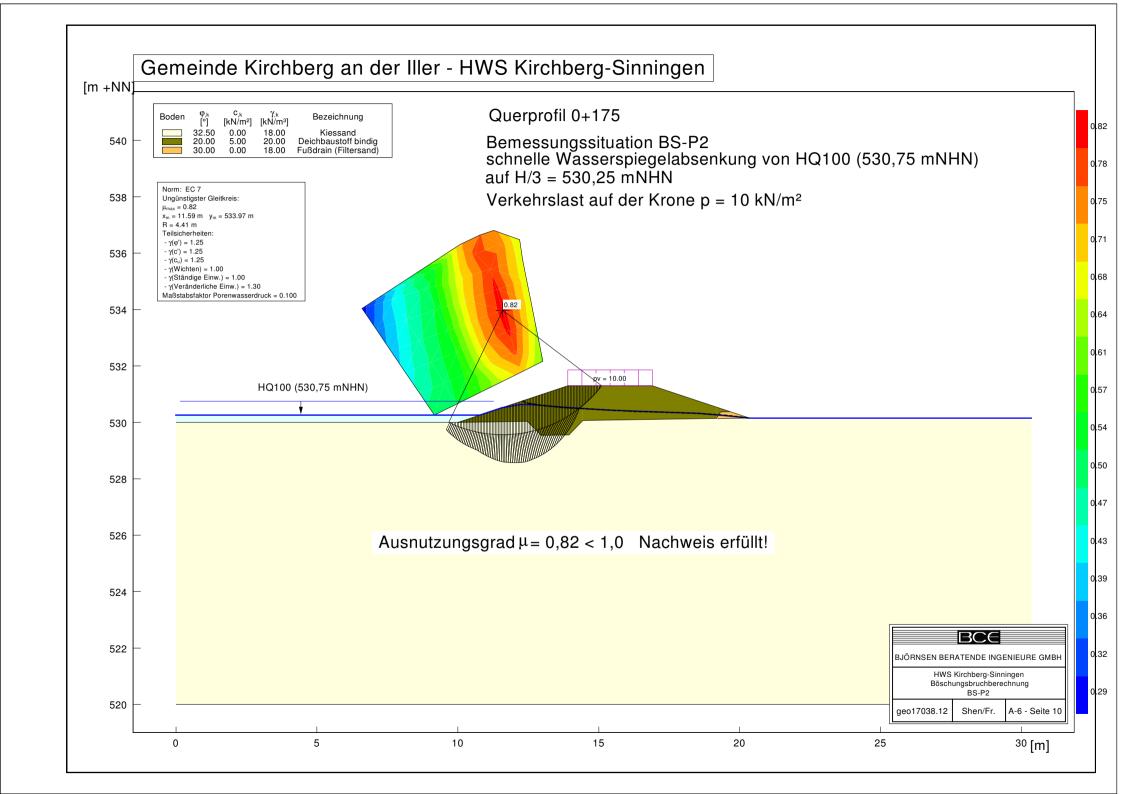
TeilsicherheitenentsprechendDIN1054:2010-12

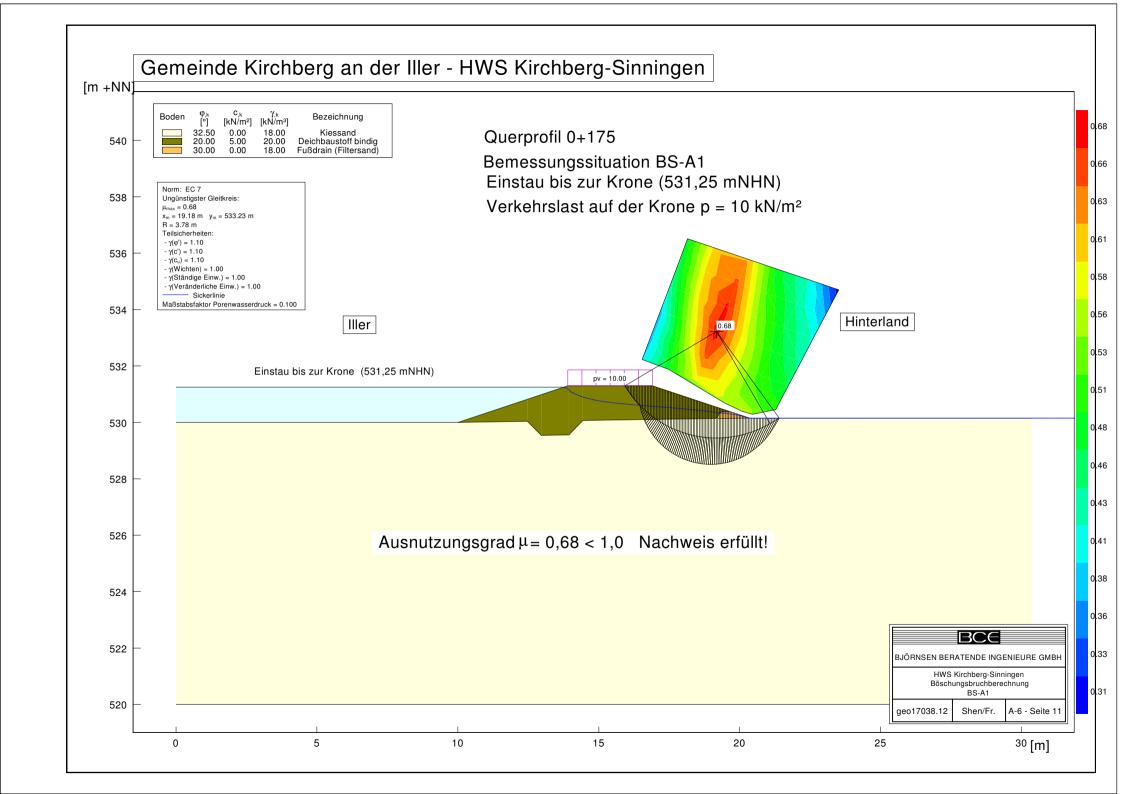
BS-P:
$$\phi_{d}'= \phi_{k}'/1,25$$
 $c_{d}'= c_{k}'/1,25$
 $\gamma_{d}= \gamma_{k}/1,00$

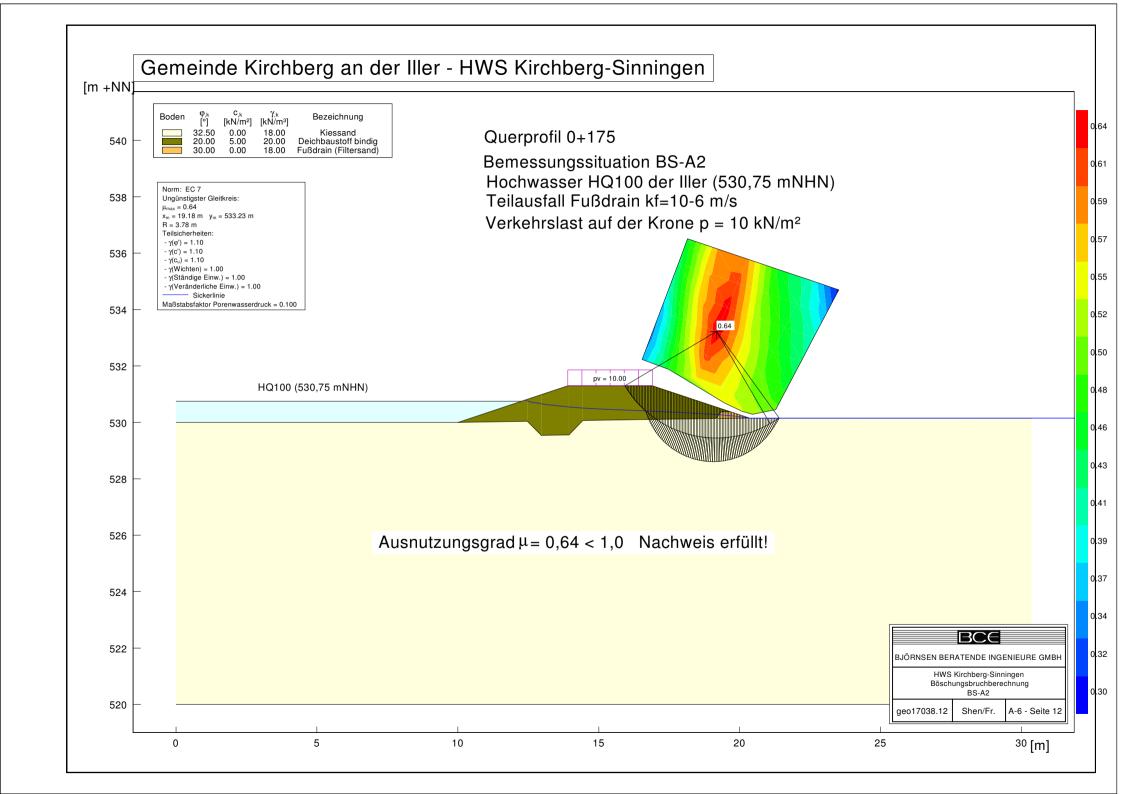
Widerstandsseite

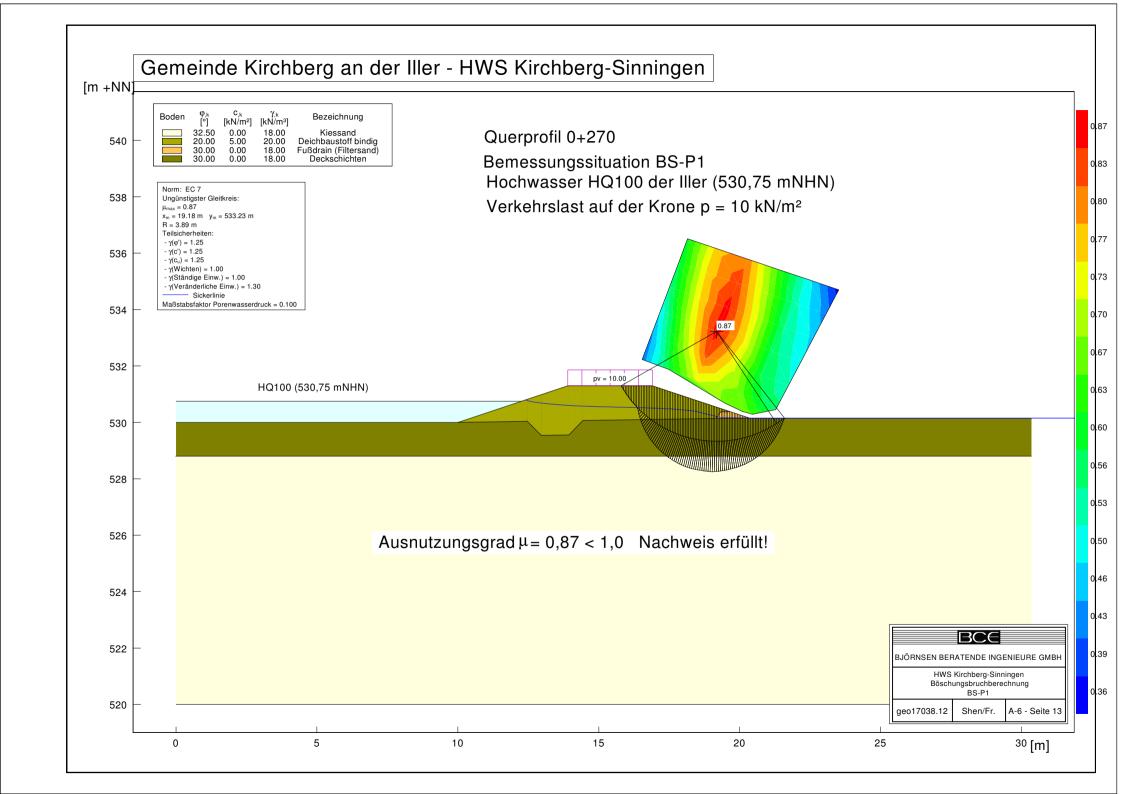
BS-A: $\phi_{d}'= \phi_{k}'/1,1$
 $c_{d}'= c_{k}'/1,1$
 $\gamma_{d}= \gamma_{k}/1,0$

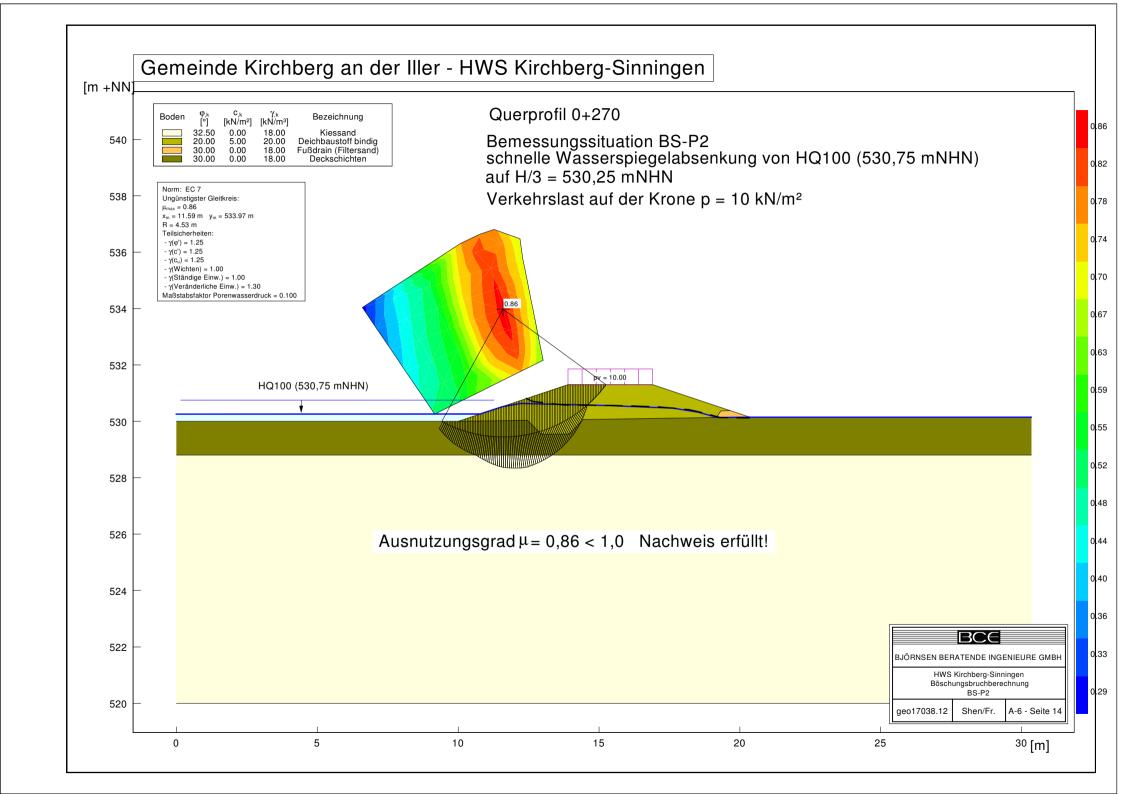

Einwirkungsseite:

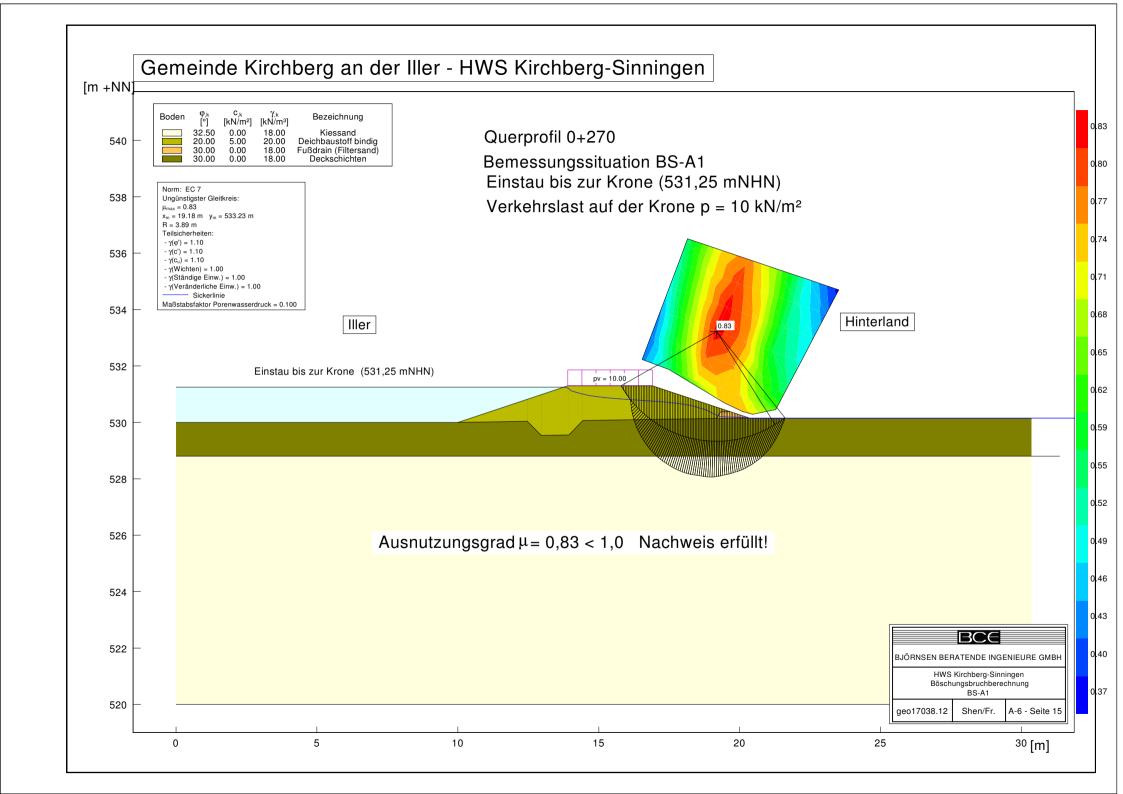

Bemessungssituation BS-P: $Q_d = Q_k * \gamma_Q = Q_k * 1,35$ Bemessungssituation BS-A: $Q_d = Q_k * \gamma_Q = Q_k * 1,0$

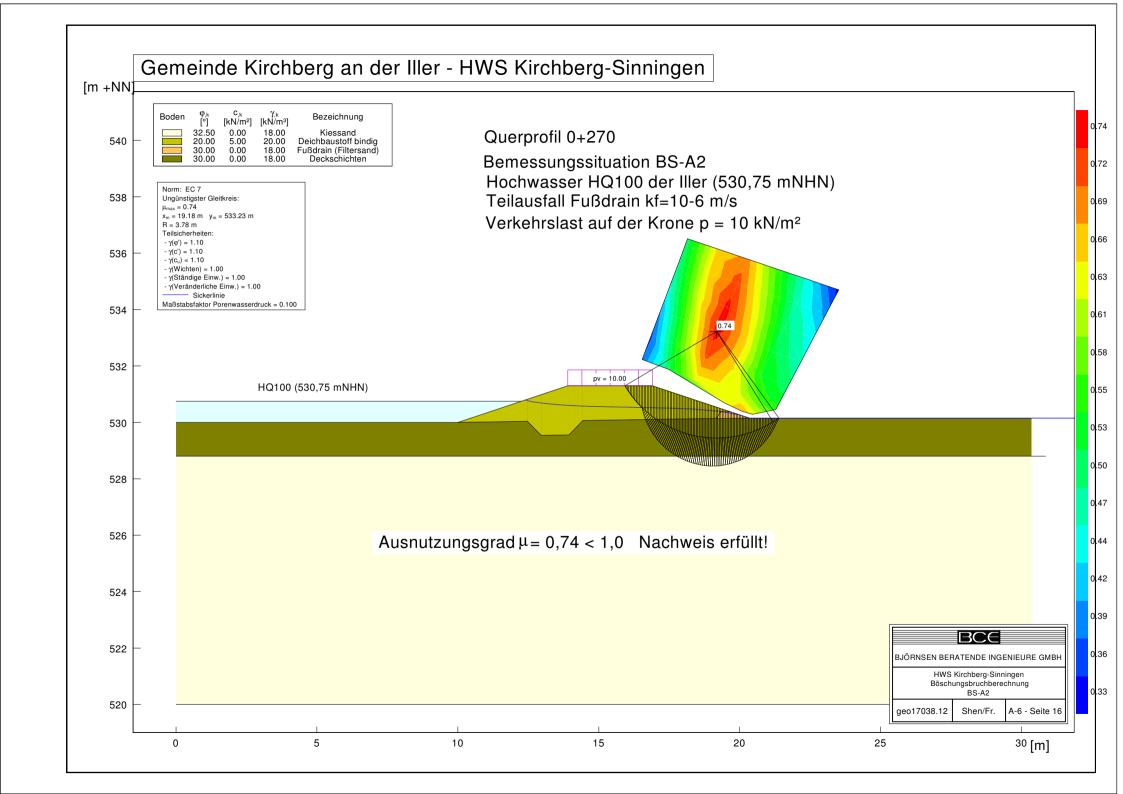

Tabelle 1: Ausnutzungsgrade globale Standsicherheit


Bemessungssituation	Ausnutzungsgrad μ ≤ 1,0	
	QP 0+175	QP 0+270
BS-P1	0,76 < 1,0	0,87 < 1,0
BS-P2	0,82 < 1,0	0,86 < 1,0
BS-A1	0,68 < 1,0	0,83 < 1,0
BS-A2	0,64 < 1,0	0,74 < 1,0


Die Berechnungsprotokolle sind auf den folgenden Seiten dokumentiert.







1.3 Lokale Böschungsstandsicherheit

Der Nachweis der lokalen Böschungsstandsicherheit wird für das körnige Material des Dränkörpers (kohäsionslos) wie folgt geführt (Nachweis hangparalleles Gleiten):

- oberhalb der Sickerlinie $tan \; \beta < tan \; \phi_d \quad und$
- unterhalb der Sickerlinie $tan \; \beta < 0.5 \; ^* \; tan \; \phi_d$

dabei sind

- β: Böschungsneigung Dränkörper 1:3, β = 18,4°
- ϕ_d : Bemessungsreibungswinkel (charakteristische Reibungswinkel dividiert durch den entsprechenden Teilsicherheitsbeiwert) hier ϕ_k ist mit 30°(Filtersand) angenommen.

Die Sickerlinie tritt nicht aus der Böschung aus (siehe untergrundhydraulische Berechnungen).

Somit gilt

 $\mu = \tan\beta / \tan\phi_d = \tan 18.4^{\circ} / (\tan 30^{\circ} / 1.25) = 0.72 < 1.0$ Nachweis erfüllt!

Es ist nicht mit lokalen Rutschungen zu rechnen.

1.4 Hydraulischer Grundbruch und Aufschwimmen einer Bodenschicht

Hydraulischer Grundbruch:

Beim Umströmen eines Bauteils stellt sich auf der Seite des geringeren Potenzials eine nach oben gerichtete Strömung ein. Es entsteht eine vertikale Strömungskraft, die dem Eigengewicht des Bodens entgegenwirkt (siehe Abbildung 2).

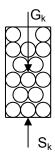
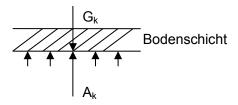


Abbildung 2: Kräfte am Bodenelement


Wird die Strömungskraft S_k größer als das Bodeneigengewicht G_k unter Auftrieb, so bricht der Boden partiell auf. Nach EC7/ DIN 1054:2010-12 muss nachgewiesen werden, dass die Bemessungswerte der destabilisierenden Einwirkungen durch die Strömungskraft nicht größer sind als die der stabilisierenden durch das Bodeneigengewicht:

$$S_k * \gamma_H \le G_k * \gamma_{G,stb}$$
 $\gamma_H \text{ und } \gamma_{G,stb}$: Teilsicherheitsbeiwerte

Aufschwimmen einer Bodenschicht:

Mit Aufschwimmen bezeichnet man das Anheben einer undurchlässigen Bodenschicht infolge der hydrostatischen Auftriebskraft des Wassers. Es ist nachzuweisen, dass das Eigengewicht des Bodens G_k größer ist als die Einwirkungen aus der Auftriebskraft des Wassers A_k (siehe Abbildung 3).

$$A_k * \gamma_{G,dst} \leq G_{k,stb} * \gamma_{G,stb} \qquad \qquad \gamma_{G,dst} \text{ und } \gamma_{G,stb} \text{: Teilsicherheitsbeiwerte}$$

Abbildung 3: Einwirkungen auf die Sohle der Bodenschicht

Entsprechend der EC7/ DIN 1054:2010-12 sind das Aufschwimmen einer Bodenschicht sowie der hydraulischer Grundbruch dem Grenzzustand HYD und UPL (Grenzzustand des Versagens durch hydraulischen Grundbruch und Aufschwimmen) zuzuordnen.

Im Querprofil 0+175 ohne luftseitige Deckschicht wird der Nachweis gegen hydraulischen Grundbruch geführt.

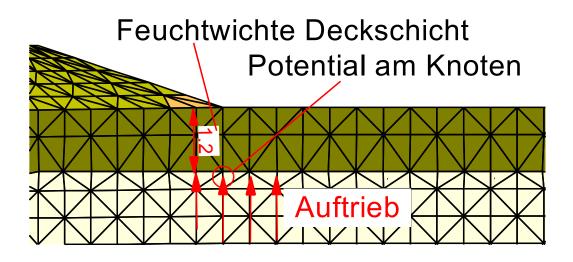
mit

 ΔH = 530,75 mNHN - 530,15 mNHN = 0,6 m Wasserstandsdifferenz

 $\Delta L = 10,5 \text{ m}$

Sickerweg unter dem Deich

 $i = \Delta H/\Delta L = 0.6 / 10.5 = 0.05$


 $S_k = i * \gamma_w$

Gk = γ ' (Auftriebswichte Boden)

$$\mu = \frac{S_k * \gamma_H}{G_k * \gamma_{G,stb}} = \frac{0.05 * 10 * 1.35}{10 * 0.95} = 0.07 < 1.0 \text{ Nachweis erfüllt!}$$

Im Querprofil 0+270 ist eine Deckschicht (d=1,2 m) vorhanden. Es wird der Nachweis gegen Aufschwimmen einer Bodenschicht geführt.

Der Restwasserdruck unter der Deckschicht wird den untergrundhydraulischen Berechnungen (siehe vorstehendes Kapitel) entnommen.

Abbildung 4: Nachweis Auftrieb Deckschicht

Die Ergebnisse sind in der nachfolgenden Tabelle zusammengestellt.

charakteristische Werte:

bindige Deckschicht:

 $G'_k = d_{bindig} * \gamma_{bindig} = 1,2 \text{ m} * 20,0 \text{ kN/m}^3 = 24 \text{ kN/m}^2$

Auftriebskraft: $A'_k = \Delta H * \gamma_W$

 Δ H: Potenzialdifferenz aus geohydraulischen Berechnungen an der Unterkante Deckschicht γ_W : Wichte Wasser = 10,0 kN/m³

Tabelle 2: Ergebniszusammenstellung: Nachweis Aufschwimmen der Deckschicht

Bemessungs- situation	ΔH [m]	Auftriebskraft A _d =A _k *γ _{G,dst} [kN]	Eigengewicht der Schicht G _d =G _k *γ _{G,stb}	Nachweis $A_d / G_d \le 1,0$ [-]	
			[kN]		
BS-P 1	1,68	17,6 kN/m²=	22,8 kN/m²=	17,6/22,8 =	
		16,8 kN/m ² *1,05	24,0 kN/m ² *0,95	0,77 < 1,0	
BS-A1	1,90	20,0 kN/m²=	22,8 kN/m²=	20,0/22,8 =	
		19,0 kN/m ² *1,05	24,0 kN/m ² *0,95	0,88 < 1,0	
BS-A2	1,68	17,6 kN/m²=	22,8 kN/m²=	17,6/22,8 =	
		16,8 kN/m ² *1,05	24,0 kN/m ² *0,95	0,77 < 1,0	

Die Gefahr des Aufschwimmens der Deckschicht besteht nicht.

1.5 Materialtransport

Bei Einbau eines bindigen, kohäsiven Bodens für den homogenen Damm kann davon ausgegangen werden, das das Material einen Korndurchmesser $d_{10} < 0,002$ mm aufweist. Entsprechend dem BAW-Merkblatt: "Standsicherheit von Dämmen an Bundeswasserstraßen, MSD 2011) kann bei diesen Böden von einer ausreichenden Haftfestigkeit der Bodenteilchen ausgegangen werden. Mit Materialtransport (Suffosion) ist nicht zu rechnen.

Der Nachweis gegen Kontakterosion ist nur zwischen Dammbaumaterial und Filter zu führen. Bei ausreichend bindigem Deichbaumaterial (große Haftfestigkeit, wahre Kohäsion) ist ein Materialtransport auszuschließen.

Sollte gemischtkörniges Material eingebaut werden, so ist der Nachweis Materialtransport im Rahmen des Eignungsnachweises zu führen. Ist dieser geometrisch nicht auszuschließen, ist ein Geotextil einzulegen. Dieses ist mechanisch und hydraulisch auf die einzubauenden Böden entsprechend DWA-M 507 mit dem Bodentyp-Verfahren nach BAW-Merkblatt (MAG) oder nach den Filterregeln entsprechend dem Merkblatt DVWK-M 221 zu bemessen.

Die Kiessande des Untergrundes (Bodengruppen GI/GU) sind als geometrisch nicht filterstabil (geometrisches Kriterium) einzustufen. Es ist der Nachweis gegen Fugenerosion zu führen. Es wird der vorhandene hydraulische Gradient bestimmt und einem zulässigen Grenzgradienten gegenübergestellt (hydraulisches Kriterium).

```
\Delta H = 530,75 mNHN - 530,15 mNHN = 0,6 m Wasserstandsdifferenz für HQ100 \Delta L = 10,5 m Sickerweg unter dem Damm
```

```
i_{vorh} = \Delta H/\Delta L = 0.6 / 10.5 = 0.05

izul = 0.2 (Kiessand) nach Chugaev

\gamma_{hyd} = 2.0 (Teilsicherheitsbeiwert Suffosion)
```

Nachweis:

$$\mu = (\gamma_{hyd} \times i_{vorh}) / i_{zul} = (2 * 0.05) / 0.2 = 0.5 < 1.0$$
 Nachweis erfüllt!

Die Gefahr von Fugenerosion besteht nicht.

1.6 Nachweis der Spreizschubspannungen am Böschungsfuß

Nachweisführung nach BRENDLIN luftseitige Deichböschungsneigung 1 : 3

Geländeneigung

ε=0°

Böschungswinkel

 β =18,4° (1:3)

Reibungswinkel Deich:

φ'_k=20° (Kohäsion wird vernachlässigt)

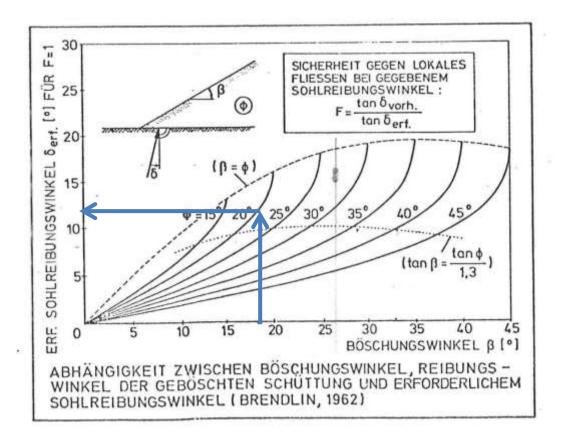


Abbildung 5: Diagramm nach Brendlin: $\delta_{erf} = f(\beta, \varphi)$

erforderlicher Sohlreibungswinkel δ_{erf} = 12°

Sicherheit:
$$\eta = \frac{\tan \varphi}{\tan \delta} = \frac{\tan 20^{\circ}}{\tan 12^{\circ}} = 1,7 > 1,3$$
 Nachweis erfüllt!

1.7 Sicherheit gegen Abschieben des Dammbauwerks

Nachweis nach			cies Dissi	V (3 11	
Be messengos:	tuation: DS	1 - P			
Shizze:					
3 3	3,0	1 3,9	4		
10 m U V	253418 m HN	-2:3	Υ	530,75m	wu 🛨
OMUV	↓ Ğı	*	2 - 18430 B = 18430	h,=0	,75m J 1
	₽ Řk		B=18430		X
	NVss		Hubber = 10		
		1,740	· · · · · · · · · · · · · · · · · · ·	ms	
			6		
Salabella	2 101 6	~ V) :	= 20 ~		
Soulreibugs			= 20°		1. da.
kohās lo lin	, der Aufsta	Asfläle:	C1=042).'clair
kohasio in Bösch-poläige	der Aufsta waskeseith	dsfläde: g: L =	c = 0 40 2,37 m		si'dan
kohās lo lin	der Aufsta waskeseith	dsfläde: g: L =	c = 0 40 2,37 m		sidan
kohás io vin Bősch-polánge Vasserdruck h	. der Auf)ta . wask-scittig öle:	dsfläde: g: L =	c 1 = 0 400 2,37 m 0,75 m	(ant der	Y
kohás io vin Bősch-polánge Vasserdruck h	. der Auf)ta . wask-scittig öle:	dsfläde: g: L =	c = 0 40 2,37 m	(ant der	Y
kohasio in Bösch-jolange	. der Auf)ta . wask-scittig öle:	dsfläde: g: L =	c 1 = 0 400 2,37 m 0,75 m	(ant der	Y
kohäsio in Bösch-jslänge Vasserdruck h Teil sichelait	der Aajsta . wasserscithig öle: sbeiweste	dsf(åde: g: L = h, =	c = 0 40 2,37 m 0,75 m B S-P	(ant der	BS-
kohasion in Bösch-sslänge Vasserdruckh Teilsiderleit Beansprudung a	der Aafsta . wasserschilg öle: s beiweste u) stadige Eine	ids f(áile: g: L = h, =	c = 0 40 2,37 m 0,75 m B S-P	(and der	Y
kohasion in Bösch-sslänge Vasserdruckh Teilsiderleit Beansprudung a	der Aafsta . wasserschilg öle: s beiweste u) stadige Eine	ids f(áile: g: L = h, =	c = 0 40 2,37 m 0,75 m B S-P	(ant de 85-7	-22 ر,د
kohäsio in Bösch-jslänge Vasserdruck h Teil sichelait	der Aafsta . wasserschilg öle: s beiweste u) stadige Eine	ids f(áile: g: L = h, =	c = 0 40 2,37 m 0,75 m B S-P	(and der	BS-
kohasion in Bösch-sslänge Vasserdruckh Teilsiderleit Beanspradung a	der Auflita wasserschild öle: s beiwerte u) stadigh Eine aus günstig 1	ids f(áile: g: L = h, =	c = 0 40 2,37 m 0,75 m B S-P 1,35 wid 0	(ant de 85-7	2.2 .,

Einwithungen:

$$W = \int_{W} L_{1} = 10,0\%0,75m = 7,5\%$$

$$W = \frac{1}{2} \cdot w \cdot L = \frac{1}{2} \cdot 7,5 \cdot 2,37 = 8,89 \frac{WV}{m}$$

$$W_{H} = W \cdot 5 \cdot 1,5 = 2,81 W$$

$$V_{V} = W \cdot \cos 3 = 8,43 W$$

$$V_{\nu} = W \cdot \cos \beta = 8,43 \, \text{KW}$$

G :

$$A_{\text{Stite Lings:}} = \frac{1}{2} \cdot 3.9 \cdot 1.3 + 3.0 \cdot 1.3 + 1.3.9.1.3$$

$$= 8.97 \text{ m}^2$$

Widerstände:

$$R_{d} = R_{h} \cdot \frac{1}{\Gamma_{R_{1}h}} = V_{h} \cdot + a_{1} \frac{S_{S_{1}}u}{\Gamma_{k_{1}h}}$$

$$= 178,86 \cdot + a_{1} \frac{20^{\circ}}{1,1} = 59,18 \frac{4N}{m}$$

Nachareis:

$$H_{A} = H_{U} \cdot \gamma_{G}$$
 (BS-P)
= 2,81.1,35 = 3,79 \(\text{m}\)

Ausnuttungsgrad
$$M = \frac{Hd}{Rd} = \frac{3,19}{59,18} = 0,06 < 1,0$$

Nachue's erbracht

					DOWN SERVICE WAS A STATE OF THE SERVICE WAS A ST									
1	Vac	Lwei	s '	nad	_ G	.EO.	- 21:	AL.	schie	ben	des	· Don	~es 51.() -
	Be.		ruyi									n Hau		
		3	9		1	3,0)	0	3,4	۸	V 	p= 0.	ا الراز المال	
),O) m NI	<u>u</u>		المؤزلا		↓ ā	-> 'i	1 - 1 · 1	Z B:	=18,43		1 h,	1,3 mVN =1,3m	
						₹\$	rk s					= 19!	****************	
Ş	Sohl	reit	ug	ว พ [.]	ارلو	1 E	Se:	= 4	J		20°			
						Aupt		-1				1141111111111111	der dille	ζ,
	1111111111			10	14-14-1-1-1-1	rseit-li			= 1 ⁼		d m 3 h			
	Tei	() ,	der	િલ્લોની <u>ક</u>	ل فئر ا	vede				BS	[ج.	3 S-7	3 S-A	
ß) ean.	sp-u	duz	aus	s4ã	ligu (<u> </u>	برا،	YG	1,3	5	1,20	1,10	
I	sea.	Jpmi	her	l aus	gà E	odly Theod	rvä.	Jakieli T	a a	C	>	0	0	
	THO 18				nol								1,10	461

Einwirhungen:

$$W = Y_{V} \cdot h_{1} = 10,0 \frac{4N}{m^{3}} \cdot 1,3 = 13,0 \frac{4U}{m^{2}}$$

$$W = \frac{1}{2} \cdot w \cdot L = \frac{1}{2} \cdot 13,0.4,1 = 26,65 \text{ KN}$$

$$W_{H} = W \cdot 3i \eta^{3} = 8,43 \text{ KN}$$

$$\geq H_{k} = W_{H} = 8.43 \text{ hV}$$

$$\sum V_{ij} = \vec{G} + \omega_{ij} = 170,43 + 25,29$$

Widerstände:

$$Rd = Rk \cdot 1 = V_{k} \cdot \tan \frac{S_{1k}}{V_{R,k}}$$

$$= 195,71 \cdot \tan \frac{20^{\circ}}{1,1} = 64,76 UV$$

Nachweis:

Ausnertsuppgrad
$$\mu = \frac{H_{ol}}{R_{ol}} = \frac{9,27}{64,76} = 0,14 < 1,0$$

Nachweis erbracht.

1.8 Setzungsberechnung

Die Berechnungen werden für den Querschnitt 0+270 mit einer Deckschichtstärke von 1,2m geführt.

- a) Eigensetzung des Deiches
- b) Setzungen in den bindigen Schichten im Untergrund aufgrund der Zusatzbelastung
- a) Eigensetzung

Der Deichkörper erleidet neben Untergrundsetzungen immer eine gewisse Eigenkonsolidation, die vom Schüttmaterial, der Verdichtung und der Deichhöhe abhängt.

Sie beträgt bei guter Verdichtung 0,3-1,0 % der Schütthöhe und klingt einige Monate nach der Herstellung des Deiches ab.

Die Eigenkonsolidation wird wie folgt abgeschätzt:

$$s_E = \frac{\gamma * h^2}{2 * Es}$$

h = Schütthöhe [m] γ = Wichte Deichbaumaterial [kN/m³] E_s = Steifemodul Deichbaumaterial [MN/m²] s_E = Setzung [m]

Querschnitt 0+270

Schütthöhe: h = 1,50 m

Deichschüttmaterial: Annahmen: γ = 20 kN/m³ und E_s = 5000 kN/m²

$$s_E = \frac{\text{y*}h^2}{2*Es} = \frac{20*1.5^2}{2*5000}$$
=0,0045 m \approx 0,5 cm

b) Setzungen in den bindigen Schichten im Untergrund aufgrund der Zusatzbelastung

Skizze:

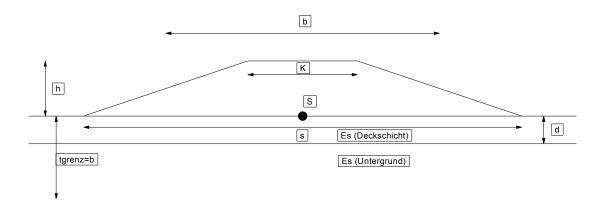


Abbildung 6: Skizze Deichbauwerk zur Ermittlung der Setzungen

Annahmen:

- Steifemodul Deckschicht Es = 2 MN/m² (mittlere Deckschichtmächtigkeit: 1,2 m)
- Steifemodul Illerterasse Es = 60 MN/m²
- mittlere Sohlbreite b=(K+s)/2 = (3+12)/2 = 7,5 m
- Spannung σ im Punkt S: $\Delta \sigma$ = γ_{Deich} x H = 20 kN/m³ x 1,5 m = 30 kN/m²
- Einflusstiefe t_{grenz} = mittlere Sohlbreite b
- Abnahme der Zusatzspannungen mit der Tiefe wird nicht berücksichtigt (sichere Seite)

Setzungsberechnung:

$$S = \frac{\Delta\sigma^*d_{\textit{Deckschicht}}}{\textit{Es}_{\textit{Deckschicht}}} + \frac{\Delta\sigma^*d_{\textit{Terrassenkes}}}{\textit{Es}_{\textit{Terrassenkes}}} = \frac{30*1,2}{2.000} + \frac{30*6,3}{60.000} = 0,02 \textit{m} = 2 \text{ cm}$$

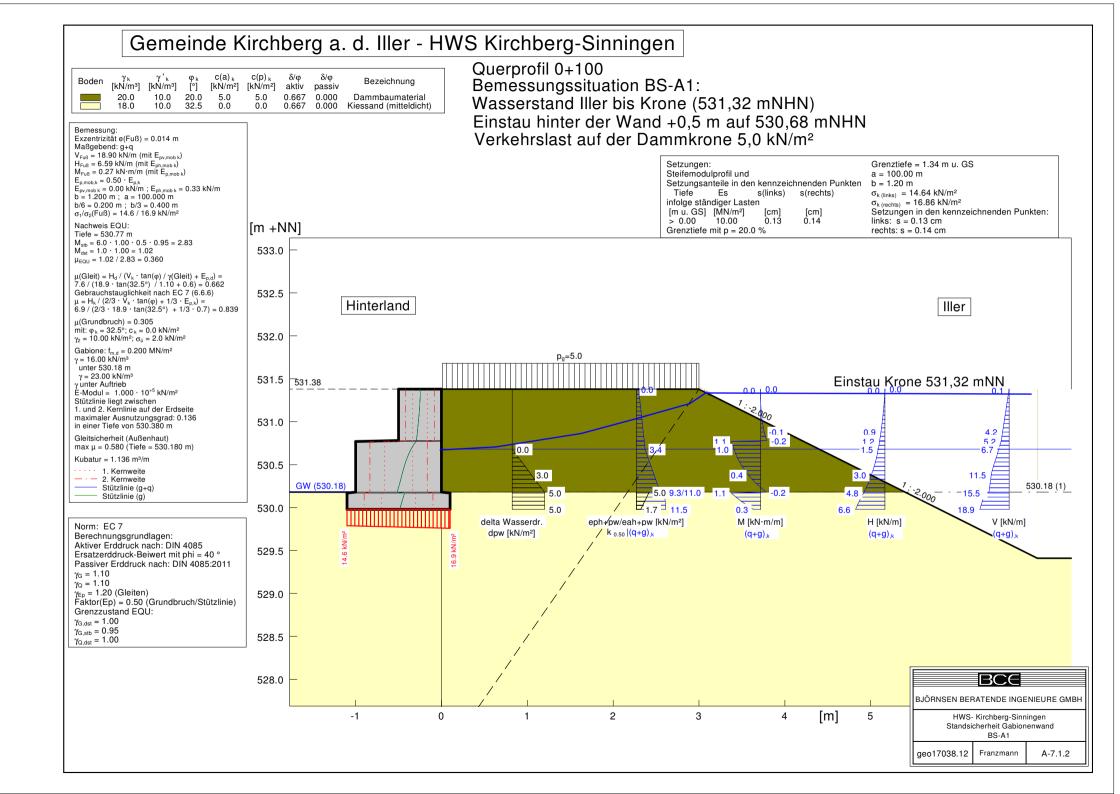
Gesamtsetzung:

Es kann davon ausgegangen werden, dass 60 % der Untergrundsetzungen während der Bauphase eintreten.

Die später auftretenden Setzungen (ca. 40%) und die Eigenkonsolidation des Deiches sind durch überhöhte Schüttung zu berücksichtigen.

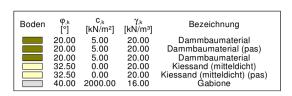
$$S_{\text{des}} = 0.4 * s + s_{\text{E}} = 0.4 * 2 + 0.5 = 1.3 \text{ cm}$$
 gewählt: 5 cm

1.9 Zusammenstellung der Berechnungsergebnisse Dammbauwerk

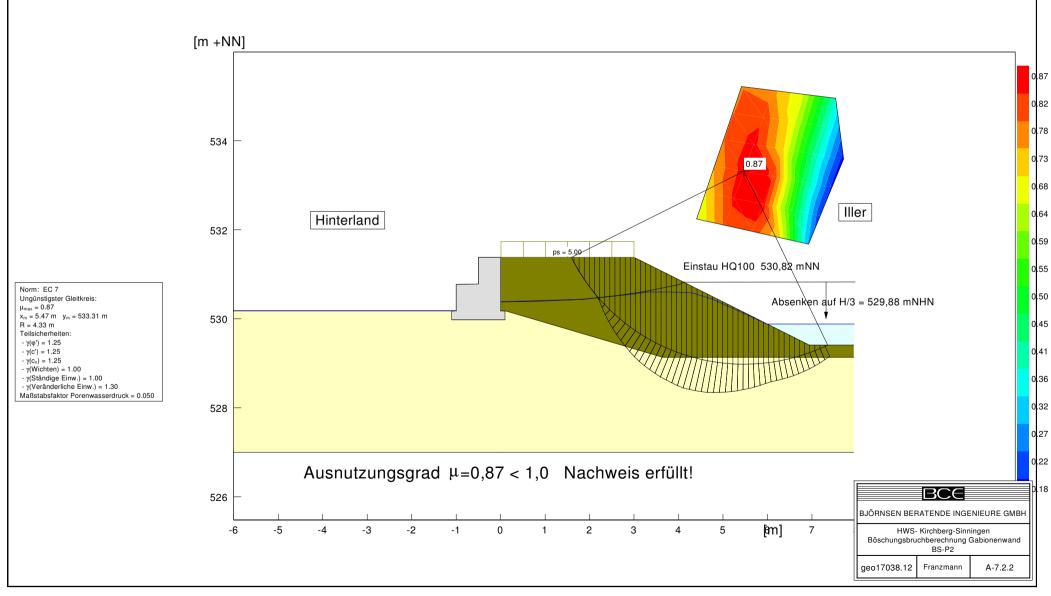

 Tabelle 3:
 Zusammenstellung der Standsicherheitsberechnungen

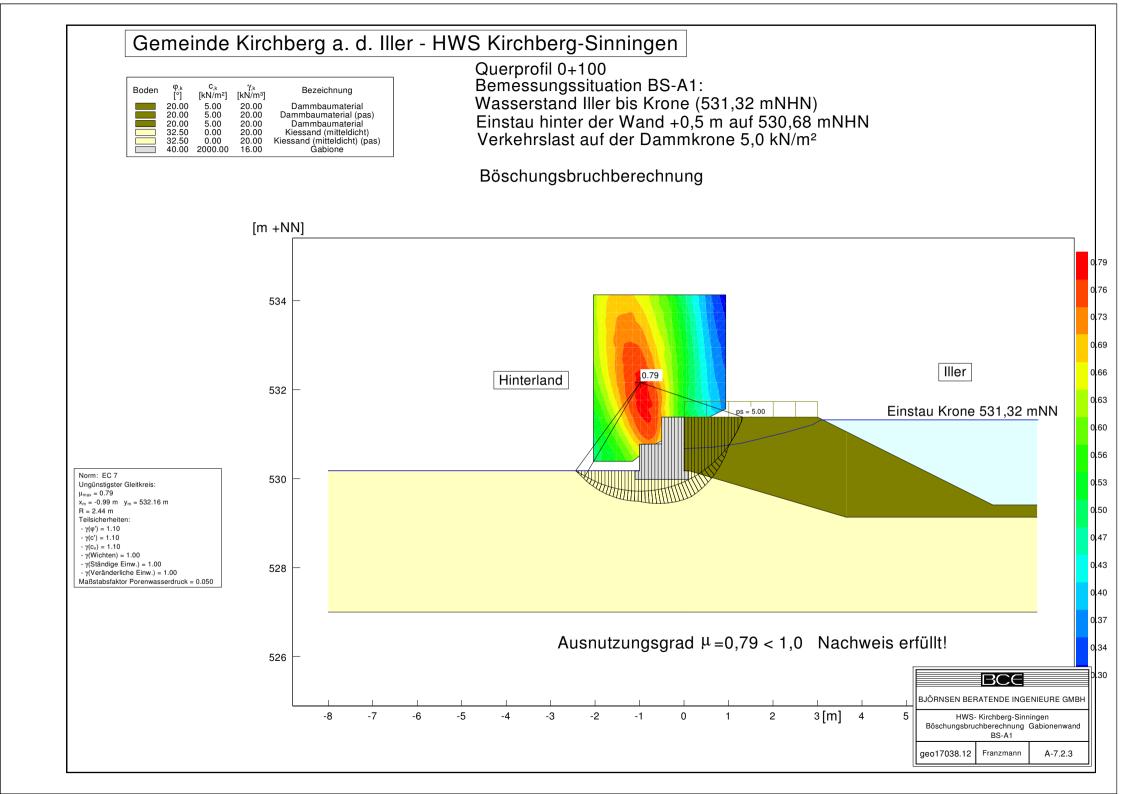
	Lufts. Sicker- Iinienaustritt	Globale Standsicherheit μ ≤ 1,0		Lokale Standsicherheit μ≤1,0	Hydr. Grundbruch μ≤1,0	Auf- schwimmen μ≤1,0	Material- transport	Spreiz- schub- spannun-	Setzun- gen s
		QP 0+175	QP 0+270		QP 0+175	QP 0+270		gen η ≥ 1,3	
BS-P1	nein	0,76 < 1,0	0,87 < 1,0	0,72 < 1,0	0,07 < 1,0	0,77 < 1,0	bei Einbau von		
BS-P2	nein	0,82 < 1,0	0,86 < 1,0	-	-	-	bindigem Bo- den mit	17 > 10	~ F om
BS-A1	nein	0,68 < 1,0	0,83 < 1,0	-	-	0,88 < 1,0	d_{10} < 0,002 mm \rightarrow kein Materi-	1,7 > 1,3	≈ 5 cm
BS-A2	nein	0,64 < 1,0	0,74 < 1,0		-	0,77 < 1,0	altransport		

Anlage A-7


Standsicherheitsberechnungen Gabionenwand

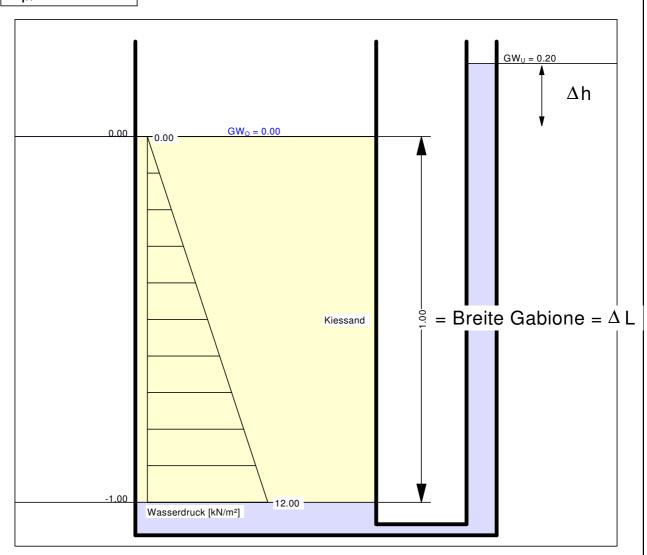
Gemeinde Kirchberg a. d. Iller - HWS Kirchberg-Sinningen Querprofil 0+100 γ_k γ'_k $[kN/m^3]$ $[kN/m^3]$ c(a) φ_k [°] Bezeichnung Boden Bemessungssituation BS-P1: [kN/m²] [kN/m²] aktiv passiv 0.000 20.0 10.0 5.0 0.667 20.0 5.0 Dammbaumaterial Wasserstand Iller HQ100 (530,82 mNHN) Wasserstand hinter der Gabionenwand auf +0,2 m (530,38 mNHN) 10.0 32.5 0.0 0.667 0.000 Kiessand (mitteldicht) Bemessuna: Verkehrslast auf der Dammkrone 5.0 kN/m² Exzentrizität e(Fuß) = 0.041 m Maßgebend: g $V_{FuB} = 20.36 \text{ kN/m (mit } E_{pv,mob \text{ k}})$ Grenztiefe = 1.33 m u. GS $H_{Fu\beta} = 5.43 \text{ kN/m (mit } E_{ph,mob \text{ k}})$ Steifemodulprofil und a = 100.00 m $M_{Fu\beta} = 0.83 \text{ kN} \cdot \text{m/m} \text{ (mit } E_{p,mob \text{ k}})$ Setzungsanteile in den kennzeichnenden Punkten b = 1.20 m $E_{p,mob,k} = 0.50 \cdot E_{p,k}$ $E_{pv,mob,k} = 0.00 \text{ kN/m}$; $E_{ph,mob,k} = 0.33 \text{ kN/m}$ $\sigma_{k \text{ (links)}} = 13.49 \text{ kN/m}^2$ Tiefe Es s(links) s(rechts) $\sigma_{k \text{ (rechts)}} = 20.44 \text{ kN/m}^2$ b = 1.200 m; a = 100.000 m infolge ständiger Lasten b/6 = 0.200 m : b/3 = 0.400 m [m u. GS] [MN/m²] Setzungen in den kennzeichnenden Punkten: [cm] $\sigma_1/\sigma_2(Fu\beta) = 13.5 / 20.4 \text{ kN/m}^2$ 0.16 10.00 0.13 links: s = 0.13 cm > 0.00 Nachweis EQU: Grenztiefe mit p = 20.0 % rechts: s = 0.16 cm [m +NN] Tiefe = 530 77 m $M_{stb} = 6.0 \cdot 1.00 \cdot 0.5 \cdot 0.90 = 2.71$ $M_{det} = 1.0 \cdot 1.10 = 1.12$ 533.0 $\mu_{\text{FOU}} = 1.12 / 2.71 = 0.412$ $\mu(Gleit) = H_d / (V_k \cdot tan(\phi) / \gamma(Gleit) + E_{p,d}) = 7.8 / (20.4 \cdot tan(32.5^\circ) / 1.10 + 0.5) = 0.635$ Gebrauchstauglichkeit nach EC 7 (6.6.6) 532.5 $\mu = H_k / (2/3 \cdot V_k \cdot \tan(\varphi) + 1/3 \cdot E_{nk}) =$ Hinterland Iller $5.8 / (2/3 \cdot 20.4 \cdot \tan(32.5^{\circ}) + 1/3 \cdot 0.7) = 0.650$ $\mu(Grundbruch) = 0.371$ mit: $\phi_k = 32.5^{\circ}$; $c_k = 0.0 \text{ kN/m}^2$ 532.0 $\gamma_2 = 10.00 \text{ kN/m}^2$; $\sigma_{ij} = 2.0 \text{ kN/m}^2$ Gabione: $f_{m,d} = 0.200 \text{ MN/m}^2$ $p_{q} = 5.0$ $\gamma = 16.00 \text{ kN/m}^3$ unter 530.18 m $\gamma = 23.00 \text{ kN/m}^3$ 531.5 531.38 v unter Auftrieb 0.0 | 0.0 0.1 1 0.0 0.0 $E-Modul = 1.000 \cdot 10^{+5} \text{ kN/m}^2$ Stützlinie liegt zwischen 1. und 2. Kernlinie auf der Erdseite HQ100 530,82 mNHN maximaler Ausnutzungsgrad: 0.172 531.0 in einer Tiefe von 530.330 m 0.9 Gleitsicherheit (Außenhaut) 1.1 3.1/ 1.2 ⊨ 5.2 $max \mu = 0.558 (Tiefe = 530.180 m)$ Kubatur = 1.136 m³/m 530.5 GW (530.38) 1. Kernweite 4.8 0.5 0.0 2. Kernweite GW (530.18) 530.18 (1) Stützlinie (g+q) 2.0 7.6/8.8 Stützlinie (a) 530.0 0.8 delta Wasserdr. eph+pw/eah+pw [kN/m2] $M[kN\cdot m/m]$ H [kN/m] V [kN/m] Norm: EC 7 dpw [kN/m²] ′ k _{0.50} |(q+g),k (q+g),k $(q+g)_{.k}$ Berechnungsgrundlagen: Aktiver Erddruck nach: DIN 4085 529.5 Ersatzerddruck-Beiwert mit phi = 40 ° Passiver Erddruck nach: DIN 4085:2011 $\gamma_{\rm G} = 1.35$ $\gamma_{\rm Q} = 1.50$ $\gamma_{Ep} = 1.40$ (Gleiten) Faktor(Ep) = 0.50 (Grundbruch/Stützlinie) 529.0 Grenzzustand EQU: $\gamma_{G,dst} = 1.10$ $\gamma_{G,stb}=0.90$ 528.5 $\gamma_{Q,dst} = 1.50$ BCE 528.0 BJÖRNSEN BERATENDE INGENIEURE GMBH [m] -1 0 2 5 HWS- Kirchberg-Sinningen Standsicherheit Gabionenwand BS-P1 geo17038.12 Franzmann A-7.1.1




Gemeinde Kirchberg a. d. Iller - HWS Kirchberg-Sinningen

Querprofil 0+100Bemessungssituation BS-P2: schnelle Wasserspiegelabsenkung von Iller HQ100 (530,82 mNHN) auf H/3 = 529,88 mNN Verkehrslast auf der Dammkrone 5,0 kN/m²

Böschungsbruchberechnung

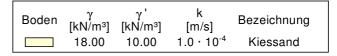


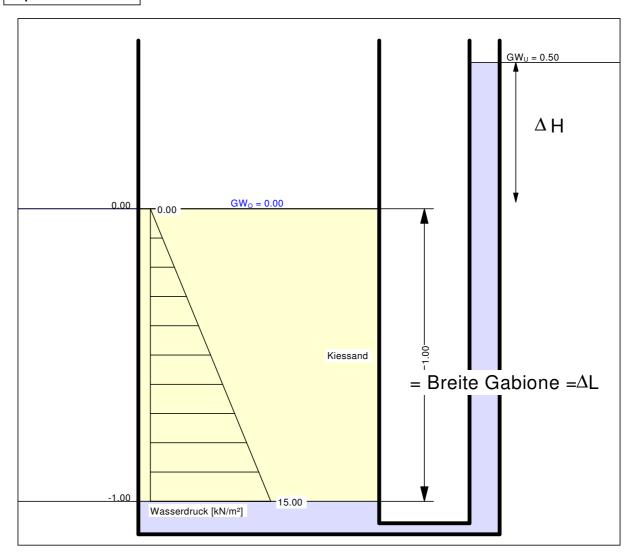
Hydraulischer Grundbruch BS-P1: Einstau +0,2 m hinter der Gabionenwand

Norm: EC 7 Teilsicherheiten: $\gamma_{G,stb} = 0.950$ $\gamma_{H} = 1.450$

 Boden
 γ
 γ'
 k
 Bezeichnung

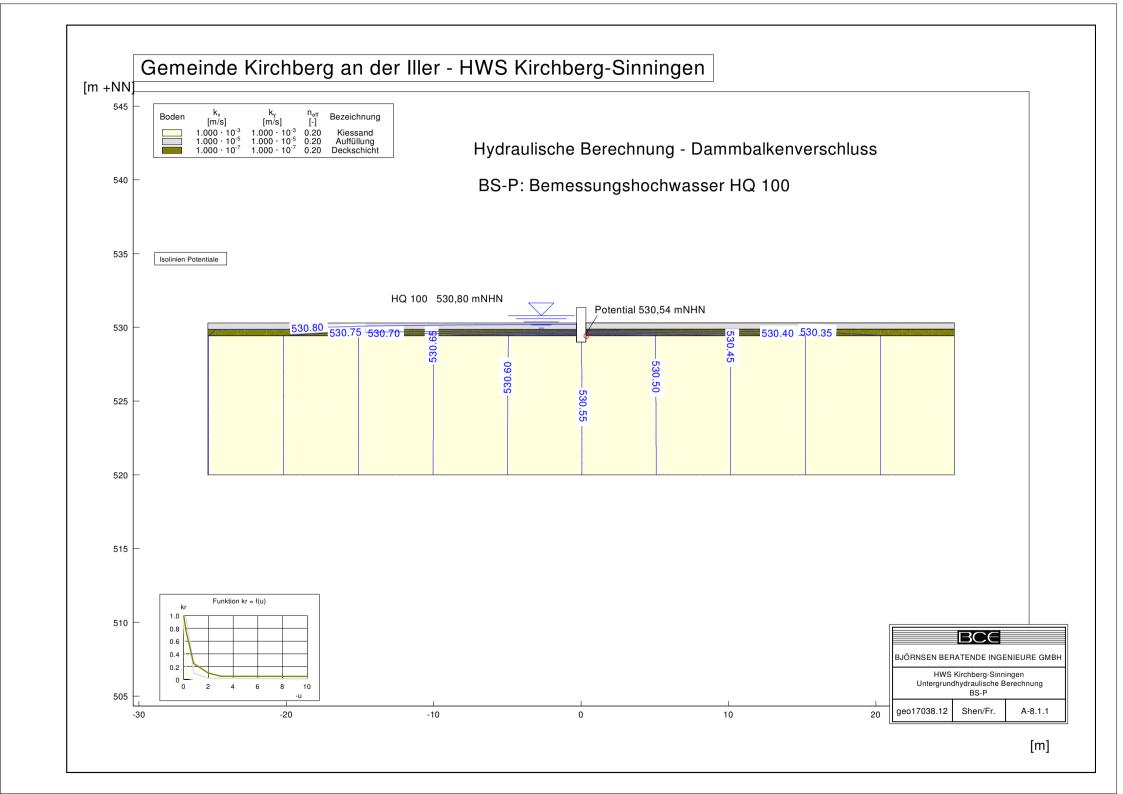
 [kN/m³]
 [kN/m³]
 [m/s]
 Kiessand

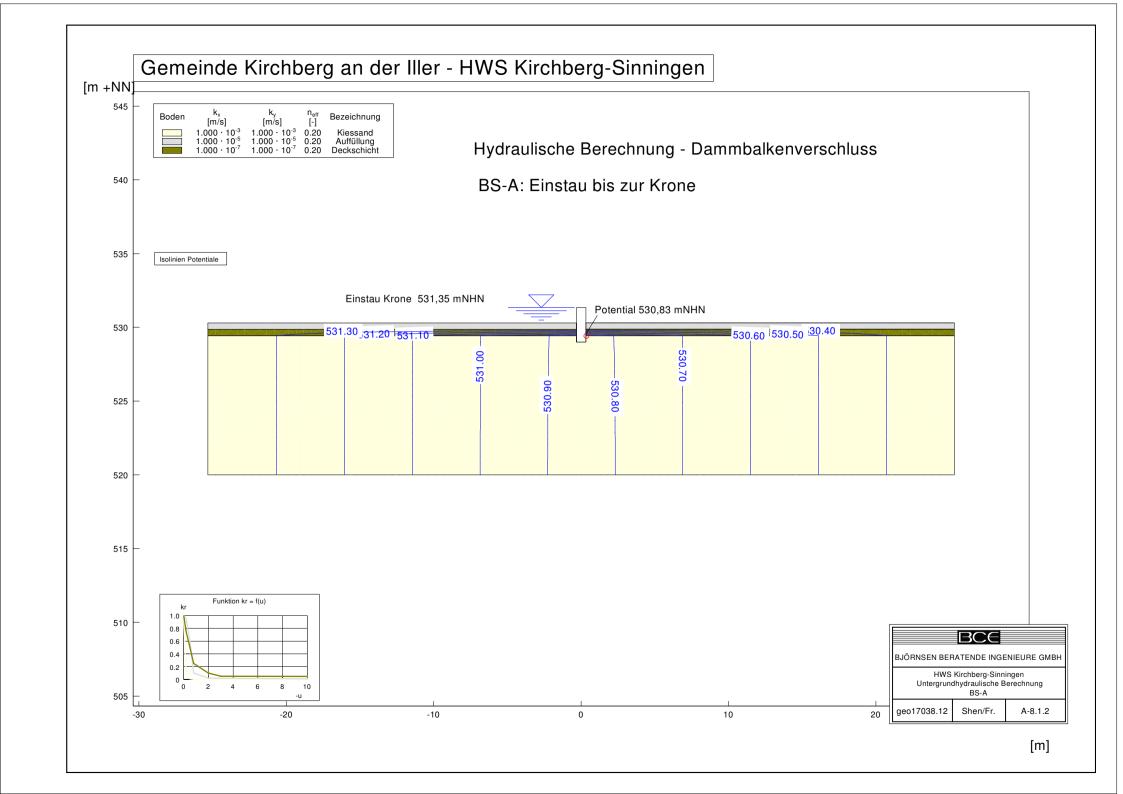



Hydraulische Grundbruchsicherheit Ausnutzungsgrad $\mu=0.31$ bei = -1.000 m Gewicht = 10.000 kN/m² $\gamma_{G,stb}=\gamma$ (Gewicht) = 0.950 Strömungskraft = 2.000 kN/m² $\gamma_{H}=\gamma$ (Strömungskraft) = 1.450 $\mu=1.450\cdot 2.000$ / (0.950 · 10.000)

Hydraulischer Grundbruch BS-A1: Einstau +0,5 m hinter der Gabionenwand

Norm: EC 7 Teilsicherheiten: $\gamma_{G,stb} = 0.950$ $\gamma_{H} = 1.250$





Hydraulische Grundbruchsicherheit Ausnutzungsgrad $\mu=0.66$ bei = -1.000 m Gewicht = 10.000 kN/m² $\gamma_{G,stb}=\gamma$ (Gewicht) = 0.950 Strömungskraft = 5.000 kN/m² $\gamma_{H}=\gamma$ (Strömungskraft) = 1.250 $\mu=1.250\cdot 5.000$ / (0.950 \cdot 10.000)

Anlage A-8

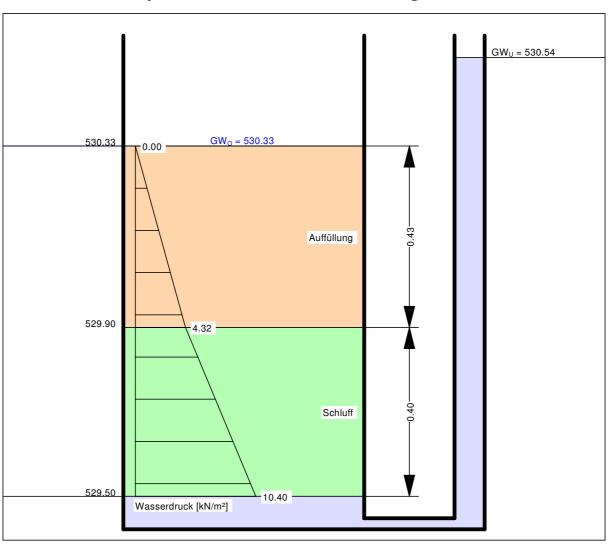
Nachweis hydraulischer Grundbruch/Aufschwimmen Dammbalkenverschluss

 Boden
 γ
 γ'
 k
 Bezeichnung

 [kN/m³]
 [kN/m³]
 [m/s]
 Bezeichnung

 18.00
 10.00
 1.0 · 10⁻⁵
 Auffüllung

 20.00
 10.00
 1.0 · 10⁻⁷
 Schluff


BJÖRNSEN BERATENDE INGENIEURE GMBH

HWS Kirchberg-Sinningen
Dammbalkenverschluss
Aufschwimmen/Hydraulischer Grundbruch

2017038.12 Franzmann A-8.2.1

Norm: EC 7 Teilsicherheiten: $\gamma_{G,dst} = 1.050$ $\gamma_{G,stb} = 0.950$ $\gamma_{H} = 1.900$

Auftriebssicherheit / Hydraulischer Grundbruch BS-P1: Bemessungshochwasser HQ100 Potential Unterkante Deckschicht aus hydraulischer Berechnung

Auftriebssicherheit Ausnutzungsgrad $\mu = 0.692$ bei = 529.500 m Gewicht = 16.600 kN/m² $\gamma_{G,stb} = \gamma$ (Gewicht) = 0.950 PW-Druck = 10.400 kN/m² $\gamma_{G,dst} = \gamma$ (PW-Druck) = 1.050 $\mu = 1.050 \cdot 10.400$ / (0.950 · 16.600)

Hydraulische Grundbruchsicherheit Ausnutzungsgrad $\mu=0.506$ bei = 529.500 m Gewicht = 8.300 kN/m² $\gamma_{G,stb}=\gamma$ (Gewicht) = 0.950 Strömungskraft = 2.100 kN/m² $\gamma_{H}=\gamma$ (Strömungskraft) = 1.900 $\mu=1.900\cdot 2.100$ / $(0.950\cdot 8.300)$

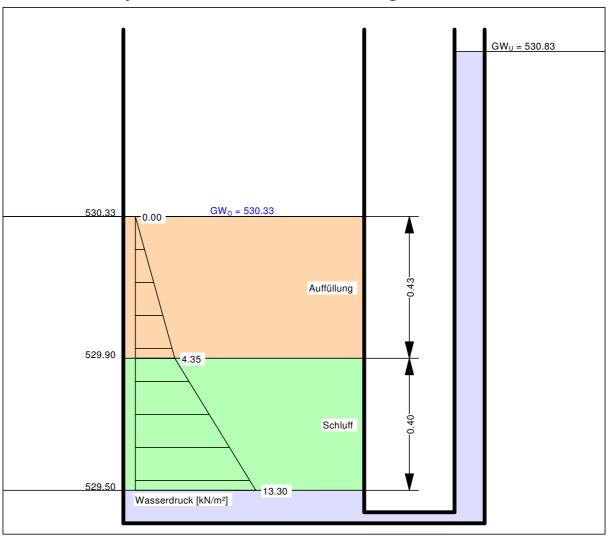
 Boden
 γ
 γ'
 k
 Bezeichnung

 [kN/m³]
 [kN/m³]
 [m/s]
 Bezeichnung

 18.00
 10.00
 1.0 ⋅ 10⁻⁵
 Auffüllung

 20.00
 10.00
 1.0 ⋅ 10⁻⁵
 Schluff

BJÖRNSEN BERATENDE INGENIEURE GMBH


HWS Kirchberg-Sinningen
Dammbalkenverschluss
Aufschwimmen/Hydraulischer Grundbruch

2017038.12 Franzmann A-8.2.2

Norm: EC 7 Teilsicherheiten: $\gamma_{G,dst} = 1.000$ $\gamma_{G,stb} = 0.950$ $\gamma_{H} = 1.250$

Auftriebssicherheit / Hydraulischer Grundbruch BS-A1: Einstau bis zur Krone Potential Unterkante Deckschicht

Potential Unterkante Deckschicht aus hydraulischer Berechnung

Auftriebssicherheit Ausnutzungsgrad $\mu = 0.843$ bei = 529.500 m Gewicht = 16.600 kN/m² $\gamma_{G,stb} = \gamma$ (Gewicht) = 0.950 PW-Druck = 13.300 kN/m² $\gamma_{G,dst} = \gamma$ (PW-Druck) = 1.000 $\mu = 1.000 \cdot 13.300 / (0.950 \cdot 16.600)$

Hydraulische Grundbruchsicherheit Ausnutzungsgrad $\mu=0.793$ bei = 529.500 m Gewicht = 8.300 kN/m² $\gamma_{G,stb}=\gamma$ (Gewicht) = 0.950 Strömungskraft = 5.000 kN/m² $\gamma_{H}=\gamma$ (Strömungskraft) = 1.250 $\mu=1.250\cdot 5.000$ / (0.950 \cdot 8.300)